Título: Current progress in Structure-Based Rational Drug Design marks a new mindset in drug discovery
Autores: Lounnas, Valère; CMBI, NCMLS Radboud University, Nijmegen Medical Centre, Geert Grooteplein 26-28, 6525 GA Nijmegen, The Netherlands
Ritschel, Tina; Computational Drug Discovery, CMBI, NCMLS, Radboud University Medical Centre, Geert Grooteplein 26-28, 6525 GA Nijmegen, The Netherlands
Kelder, Jan; c Beethovengaarde 97, 5344 CD Oss, The Netherlands
McGuire, Ross; BioAxis Research BV, Oss Life Sciences Park, Molenstraat 110, 5342 CC Oss, The Netherlands
Bywater, Robert Paul; Magdalen College, High Street, Oxford OX1 4AU, England
Foloppe, Nicolas; 51 Natal Road, Cambridge, United Kingdom
Fecha: 2013-04-02
Publicador: Computacional and structural biotechnology journal
Fuente:
Tipo: info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Peer-reviewed Article
Tema: No aplica
Descripción: The past decade has witnessed a paradigm shift in preclinical drug discovery with structure-based drug design (SBDD) making a comeback while high-throughput screening (HTS) methods have continued to generate disappointing results. There is a deficit of information between identified hits and the many criteria that must be fulfilled in parallel to convert them into preclinical candidates that have a real chance to become a drug. This gap can be bridged by investigating the interactions between the ligands and their receptors. Accurate calculations of the free energy of binding are still elusive; however progresses were made with respect to how one may deal with the versatile role of water. A corpus of knowledge combining X-ray structures, bioinformatics and molecular modeling techniques now allows drug designers to routinely produce receptor homology models of increasing quality. These models serve as a basis to establish and validate efficient rationales used to tailor and/or screen virtual libraries with enhanced chances of obtaining hits. Many case reports of successful SBDD show how synergy can be gained from the combined use of several techniques. The role of SBDD with respect to two different classes of widely investigated pharmaceutical targets: (a) protein kinases (PK) and (b) G-protein coupled receptors (GPCR) is discussed. Throughout these examples prototypical situations covering the current possibilities and limitations of SBDD are presented.
Idioma: Inglés

Artículos similares:

Systems biology and metabolic engineering of Arthrospira cell factories por Klanchui, Amornpan,Vorapreeda, Tayvich,Vongsangnak, Wanwipa,Kannapho, Chiraphan,Cheevadhanarak, Supapon,Meechai, Asawin
The Role of INDY in Metabolic Regulation por Willmes, Diana M; Charité University School of Medicine Berlin,Birkenfeld, Andreas L; Charité University School of Medicine Berlin
Structure-based Methods for Computational Protein Functional Site Prediction por KC, Dukka B; North Carolina A&T State University
The Biochemistry of Vitreoscilla hemoglobin por Stark, Benjamin C.; Illinois Institute of Technology,Dikshit, Kanak L.; Institute of Microbial Technology,Pagilla, Krishna R.; Illinois Institute of Technology
Computer-Aided Protein Directed Evolution: a Review of Web Servers, Databases and other Computational Tools for Protein Engineering por Verma, Rajni; Jacobs University Bremen,Schwaneberg, Ulrich; RWTH Aachen University,Roccatano, Danilo; Jacobs University Bremen
A method to predict edge strands in beta-sheets from protein sequences por Guilloux, Antonin,Caudron, Bernard,Jestin, Jean-Luc
MD simulation studies to investigate iso-energetic conformational behaviour of modified nucleosides m2G and m22G present in tRNA por Bavi, Rohit S,Sambhare, Susmit B,Sonawane, Kailas D; Structural Bioinformatics Unit, Department of Biochemistry, Shivaji University, Kolhapur 416 004, Maharashtra (M.S.), India.
Metabolomics in the identification of biomarkers of dietary intake por O’Gorman, Aoife,Gibbons, Helena,Brennan, Lorraine
10