Título: Engineering Non-Heme Mono- and Dioxygenases for Biocatalysis
Autores: Dror, Adi; Technion - Israel Institute of Technology
Fishman, Ayelet; Technion - Israel Institute of Technology
Fecha: 2012-10-23
Publicador: Computacional and structural biotechnology journal
Fuente:
Tipo: info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Peer-reviewed Article
Tema: No aplica
Descripción: Oxygenases are ubiquitous enzymes that catalyze the introduction of one or two oxygen atoms to unreactive chemical compounds. They require reduction equivalents from NADH or NADPH and comprise metal ions, metal ion complexes, or coenzymes in their active site. Thus, for industrial purposes, oxygenases are most commonly employed using whole cell catalysis, to alleviate the need for co-factor regeneration. Biotechnological applications include bioremediation, chiral synthesis, biosensors, fine chemicals, biofuels, pharmaceuticals, food ingredients and polymers. Controlling activity and selectivity of oxygenases is therefore of great importance and of growing interest to the scientific community. This review focuses on protein engineering of non-heme monooxygenases and dioxygenases for generating improved or novel functionalities. Rational mutagenesis based on x-ray structures and sequence alignment, as well as random methods such as directed evolution, have been utilized. It is concluded that knowledge-based protein engineering accompanied with targeted libraries, is most efficient for the design and tuning of biocatalysts towards novel substrates and enhanced catalytic activity while minimizing the screening efforts.
Idioma: Inglés

Artículos similares:

Systems biology and metabolic engineering of Arthrospira cell factories por Klanchui, Amornpan,Vorapreeda, Tayvich,Vongsangnak, Wanwipa,Kannapho, Chiraphan,Cheevadhanarak, Supapon,Meechai, Asawin
The Role of INDY in Metabolic Regulation por Willmes, Diana M; Charité University School of Medicine Berlin,Birkenfeld, Andreas L; Charité University School of Medicine Berlin
Structure-based Methods for Computational Protein Functional Site Prediction por KC, Dukka B; North Carolina A&T State University
The Biochemistry of Vitreoscilla hemoglobin por Stark, Benjamin C.; Illinois Institute of Technology,Dikshit, Kanak L.; Institute of Microbial Technology,Pagilla, Krishna R.; Illinois Institute of Technology
Computer-Aided Protein Directed Evolution: a Review of Web Servers, Databases and other Computational Tools for Protein Engineering por Verma, Rajni; Jacobs University Bremen,Schwaneberg, Ulrich; RWTH Aachen University,Roccatano, Danilo; Jacobs University Bremen
A method to predict edge strands in beta-sheets from protein sequences por Guilloux, Antonin,Caudron, Bernard,Jestin, Jean-Luc
MD simulation studies to investigate iso-energetic conformational behaviour of modified nucleosides m2G and m22G present in tRNA por Bavi, Rohit S,Sambhare, Susmit B,Sonawane, Kailas D; Structural Bioinformatics Unit, Department of Biochemistry, Shivaji University, Kolhapur 416 004, Maharashtra (M.S.), India.
Metabolomics in the identification of biomarkers of dietary intake por O’Gorman, Aoife,Gibbons, Helena,Brennan, Lorraine
10