Título: A network-based approach for predicting Hsp27 knock-out targets in mouse skeletal muscles
Autores: Kammoun, Malek
Picard, Brigitte
Henry-Berger, Joëlle
Cassar-Malek, Isabelle
Fecha: 2013-08-14
Publicador: Computacional and structural biotechnology journal
Fuente:
Tipo: info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion

Tema: No aplica
Descripción: Thanks to genomics, we have previously identified markers of beef tenderness, and computed a bioinformatic analysis that enabled us to build an interactome in which we found Hsp27 at a crucial node. Here, we have used a network-based approach for understanding the contribution of Hsp27 to tenderness through the prediction of its interactors related to tenderness. We have revealed the direct interactors of Hsp27. The predicted partners of Hsp27 included proteins involved in different functions, e.g. members of Hsp families (Hsp20, Cryab, Hsp70a1a, and Hsp90aa1), regulators of apoptosis (Fas, Chuk, and caspase-3), translation factors (Eif4E, and Eif4G1), cytoskeletal proteins (Desmin) and antioxidants (Sod1). The abundances of 15 proteins were quantified by Western blotting in two muscles of HspB1-null mice and their controls. We observed changes in the amount of most of the Hsp27 predicted targets in mice devoid of Hsp27 mainly in the most oxidative muscle. Our study demonstrates the functional links between Hsp27 and its predicted targets. It suggests that Hsp status, apoptotic processes and protection against oxidative stress are crucial for post-mortem muscle metabolism, subsequent proteolysis, and therefore for beef tenderness.
Idioma: Inglés

Artículos similares:

Systems biology and metabolic engineering of Arthrospira cell factories por Klanchui, Amornpan,Vorapreeda, Tayvich,Vongsangnak, Wanwipa,Kannapho, Chiraphan,Cheevadhanarak, Supapon,Meechai, Asawin
The Role of INDY in Metabolic Regulation por Willmes, Diana M; Charité University School of Medicine Berlin,Birkenfeld, Andreas L; Charité University School of Medicine Berlin
Structure-based Methods for Computational Protein Functional Site Prediction por KC, Dukka B; North Carolina A&T State University
The Biochemistry of Vitreoscilla hemoglobin por Stark, Benjamin C.; Illinois Institute of Technology,Dikshit, Kanak L.; Institute of Microbial Technology,Pagilla, Krishna R.; Illinois Institute of Technology
Computer-Aided Protein Directed Evolution: a Review of Web Servers, Databases and other Computational Tools for Protein Engineering por Verma, Rajni; Jacobs University Bremen,Schwaneberg, Ulrich; RWTH Aachen University,Roccatano, Danilo; Jacobs University Bremen
A method to predict edge strands in beta-sheets from protein sequences por Guilloux, Antonin,Caudron, Bernard,Jestin, Jean-Luc
MD simulation studies to investigate iso-energetic conformational behaviour of modified nucleosides m2G and m22G present in tRNA por Bavi, Rohit S,Sambhare, Susmit B,Sonawane, Kailas D; Structural Bioinformatics Unit, Department of Biochemistry, Shivaji University, Kolhapur 416 004, Maharashtra (M.S.), India.
Metabolomics in the identification of biomarkers of dietary intake por O’Gorman, Aoife,Gibbons, Helena,Brennan, Lorraine
10