Título: Circuitry and role of substance P-immunoreactive neurons in the primate retina
Autores: Cuenca Navarro, Nicolás
Kolb, Helga
Fecha: 2011-03-26
2011-03-26
1998-04-20
Publicador: RUA Docencia
Fuente:
Tipo: info:eu-repo/semantics/article
Tema: Wide-field amacrine cell
Large ganglion cell
Axon-like processes
Synaptic input
Synaptic output
Oftalmología
Fisiología
Descripción: In this paper, we extend our previous light microscopic (LM) study of substance P (SP)-containing amacrine and ganglion cell types of the human retina (Cuenca et al. [1995] J. Comp. Neurol. 356:491–504) to an electron microscopic (EM) and confocal-imaging study in order to reveal synaptic circuitry and putative input and output neurons. SP-immunoreactive (-IR) amacrine cells in primate retina are typically wide-field cells with large cell bodies occurring in normal or displaced positions relative to the inner plexiform layer (IPL). Their main dendrites bear many spines and are monostratified in stratum 3 (S3) of the IPL. Axon-like processes arise from dendrites close to the cell body and run for hundreds of microns at the same level as the dendrites, thus forming a relatively dense plexus in S3 of the IPL. SP-IR axon processes also climb to S1 to surround some amacrine cell bodies, and others pass into the outer plexiform layer (OPL). Still other axons run down to the ganglion cell layer, where they encircle SP-IR ganglion cells and pass on to end in the nerve fiber layer. The SP-IR ganglion cell types have large cell bodies (20–22 μm diameter) and dendrites that costratify in S3 among the SP-IR amacrine cell processes. Double immunostaining and study by confocal microscopy reveals that SP-IR amacrine cells in the monkey colocalize γ-aminobutyric acid (GABA). Their main plexus of dendrites in S3 of the IPL is skirted on the S2/S3 border by cone bipolar axons that stain for calbindin but intermingles primarily with glycinergic bipolar cell types of S3 and S3-S4. Strongly GABA-IR/weakly glycine-IR amacrine cell bodies, in addition to the SP-IR large-bodied ganglion cell type, are targets of encircling SP-IR axon processes. EM study of the human SP-IR amacrine cell indicates that input synapses to its dendrites are from bipolar cell axons of the S2/S3 border, S3, and the S3/S4 border of the IPL neuropil (33% of the synaptic input) and from amacrine cell processes (67% of the synaptic input). The input amacrine cells are of at least two distinct types based on cytological criteria. Synaptic output from the SP-IR amacrine cell dendrites is to bipolar cell axons as reciprocal synapses (31%), to amacrine cells (40%), and to ganglion cell profiles, primarily in S3 (29%) of the IPL. The SP-IR axons synapse upon SP-IR ganglion cell bodies and axons, upon normally placed and displaced amacrine cell bodies, and upon bipolar cell dendrites in the OPL. In addition, they appear to synapse among themselves. We shall discuss a wiring diagram and the possible role of SP-IR amacrine cells in the primate retina.
Research to Prevent Blindness Corp.; Grant sponsor: National Eye Institute; Grant number: EY03323; Grant sponsor: DGICYT Spain; Grant number: PB94-1501.
Idioma: Inglés

Artículos similares:

Choosing the correct paradigm for unknown words in rule-based machine translation systems por Sánchez Cartagena, Víctor Manuel,Esplà Gomis, Miquel,Sánchez Martínez, Felipe,Pérez Ortiz, Juan Antonio
Using external sources of bilingual information for on-the-fly word alignment por Esplà Gomis, Miquel,Sánchez Martínez, Felipe,Forcada Zubizarreta, Mikel L.
10