Título: Developmental regulation of calcium-dependent feedback in Xenopus rods
Autores: Solessio, Eduardo
Mani, Shobana S.
Cuenca Navarro, Nicolás
Engbretson, Gustav A.
Barlow, Robert B.
Knox, Barry E.
Fecha: 2008-10-08
2008-10-08
2004-10-25
Publicador: RUA Docencia
Fuente:
Tipo: info:eu-repo/semantics/article
Tema: Signal transduction
Photoreceptors
G protein cascade
Retina
Adaptation
Fisiología
Descripción: The kinetics of activation and inactivation in the phototransduction pathway of developing Xenopus rods were studied. The gain of the activation steps in transduction (amplification) increased and photoresponses became more rapid as the rods matured from the larval to the adult stage. The time to peak was significantly shorter in adults (1.3 s) than tadpoles (2 s). Moreover, adult rods recovered twice as fast from saturating flashes than did larval rods without changes of the dominant time constant (2.5 s). Guanylate cyclase (GC) activity, determined using IBMX steps, increased in adult rods from ~1.1 s–1 to 3.7 s–1 5 s after a saturating flash delivering 6,000 photoisomerizations. In larval rods, it increased from 1.8 s–1 to 4.0 s–1 9 s after an equivalent flash. However, the ratio of amplification to the measured dark phosphodiesterase activity was constant. Guanylate cyclase–activating protein (GCAP1) levels and normalized Na+/Ca2+, K+ exchanger currents were increased in adults compared with tadpoles. Together, these results are consistent with the acceleration of the recovery phase in adult rods via developmental regulation of calcium homeostasis. Despite these large changes, the single photon response amplitude was ~0.6 pA throughout development. Reduction of calcium feedback with BAPTA increased adult single photon response amplitudes threefold and reduced its cutoff frequency to that observed with tadpole rods. Linear mathematical modeling suggests that calcium-dependent feedback can account for the observed differences in the power spectra of larval and adult rods. We conclude that larval Xenopus maximize sensitivity at the expense of slower response kinetics while adults maximize response kinetics at the expense of sensitivity.
This work was supported by the National Institutes of Health grants EY-11256 and EY-12975 (B.E. Knox), EY-00667 (R.B. Barlow), and EY-13772 (G.A. Engbretson), Research to Prevent Blindness (unrestricted grant to SUNY UMU Department of Ophthalmology and Career Development Awards to E. Solessio and S.S. Mani) and Lions of CNY.
Idioma: Inglés

Artículos similares:

Choosing the correct paradigm for unknown words in rule-based machine translation systems por Sánchez Cartagena, Víctor Manuel,Esplà Gomis, Miquel,Sánchez Martínez, Felipe,Pérez Ortiz, Juan Antonio
Using external sources of bilingual information for on-the-fly word alignment por Esplà Gomis, Miquel,Sánchez Martínez, Felipe,Forcada Zubizarreta, Mikel L.
10