Título: Estudio de superficies usando un microscopio de efecto túnel (STM)
A study of surfaces using a scanning tunneling microscope (STM)
Autores: Ávila Bernal Alba Graciela
Bonilla Osorio Ruy Sebastián
Fecha: 2009-12-01
Publicador: Ingeniería e investigación
Fuente:

Tipo:



Tema: STM; efecto túnel; piezoeléctrico; control PI; bias; histéresis; deriva
STM; tunnel effect; piezoelectric; PI control; bias; hysteresis; drift
Descripción: Los microscopios de barrido se han convertido en las manos y los “ojos” de experimentadores de nuestro siglo, son herramien- tas necesarias en los laboratorios de educación e investigación para la caracterización a nanoescalas. El presente artículo pre- senta las modificaciones en la implementación electrónica (caracterización de los piezoeléctricos y sistema de barrido) y mecáni- ca (diseño de un sistema de antivibración) de un microscopio de barrido de efecto túnel que han permitido visualización y modi- ficación de superficies a nanoescala. Se describe una metodología para la correcta visualización y caracterización de superficies usando el instrumento implementado, alcanzando la cuantificación bidimensional de características de hasta 1300nm2, con re- solución ~15nm. Esta metodología, determinada experimentalmente, tiene en cuenta parámetros críticos para la estabilización de la corriente túnel, como lo son la velocidad de barrido y las geometrías y dimensiones de las agujas del microscopio. La ver- satilidad del microscopio permite modificar y visualizar los defectos introducidos en muestras de HOPG al aplicar voltajes entre la punta del microscopio y la muestra. Los resultados aquí descritos permiten presentar fácilmente los conceptos de barrido to- pográfico y litografía.
Sweeping/scanning microscopes have become an experimental scientist’s hands and eyes in this century; they have become a powerful and necessary tool for nanoscale characterisation in education and research laboratories all around the world. This arti- cle presents the modifications made in the mechanical (isolation or designing an anti-vibration system) and electrical (piezoelec- tric and scanning system characterisation) implementation of a scanning tunnelling microscope (STM), thereby allowing nanosca- le surfaces to be visualised and modified. A methodology for visualising and characterising surfaces using the aforementioned instrument is described, bidimensional quantification of up to 1,300 nm2, with ~15 nm resolution being reached. This experi- mental methodology took critical parameters for tunnelling current stability into account, such as scanning speed and microscope tip geometry and dimensions. This microscope’s versatility allowed defects in highly oriented pyrolytic graphite (HOPG) samples to be modified and visualised by applying a voltage between the tip and the sample. The concepts of topography scanning and lithography can be easily understood by using the instrument implemented here.
Idioma: Español

Artículos similares:

Aplicación del método de elementos naturales a problemas estructurales,Natural elements’ methods applied to structural problems por González Torres Libardo Andrés ,Garzón Alvarado Diego Alexander ,Roa Garzón Máximo Alejandro
10