Título: A Simple Method for the Biodiesel Production by the Reuse of Different Types of Waste Frying Oils
Autores: Silva, Tiago Almeida; Laboratory of Renewable Energy and Environment of Pontal, Faculty of Integrated Sciences of Pontal, Federal University of Uberlândia. Rua Vinte 1600, Tupã. 38304-402, Ituiutaba, MG, Brazil.
Batista, Antonio Carlos Ferreira; Laboratory of Renewable Energy and Environment of Pontal, Faculty of Integrated Sciences of Pontal, Federal University of Uberlândia. Rua Vinte 1600, Tupã. 38304-402, Ituiutaba, MG, Brazil.
Vieira, Andressa Tironi; Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo. Av. Bandeirantes 3900, Monte Alegre. 14040-901, Ribeirão Preto, SP, Brazil.
Oliveira, Marcelo Firmino de; Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo. Av. Bandeirantes 3900, Monte Alegre. 14040-901, Ribeirão Preto, SP, Brazil.
Fecha: 2013-06-30
Publicador: Advances in Petroleum Exploration and Development
Fuente:
Tipo: info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Peer-reviewed Article

Tema:
Methylic biodiesel; Ethylic biodiesel; Waste frying oils

Descripción: A simple and complete method for the production and characterization of methylic and ethylic biodiesel from the main types of waste frying oils produced in Brazil was developed. The waste frying oils of soybean, canola, corn and sunflower were employed in the production of methylic and ethylic biodiesel by transesterification reaction via basic homogeneous catalysis. The transesterification reactions were performed at 40ºC during 40 min, using a catalyst percentage (KOH) equal to 2%. After separation of the phases biodiesel/glycerol, biodiesel was washed with 0.1M HCl aqueous solution, heated at 100 ºC to remove excess alcohol and finally filtered under vacuum with silica, a drying agent. The reaction yields were in the range 67.8-95.9%, quite satisfactory. The oxidative stability index was obtained for the oils as well as the biodiesel. Quality control of the original oil and of the methylic and ethylic biodiesels was accomplished by the TLC and GC-MS techniques. The results presented indicate the main waste frying oils produced in Brazil as potential sources of feedstocks for biodiesel production, which could aid in the development of the local cities that adopt programs to collect and reuse of waste oils. Furthermore, we emphasize that was obtained a route for biodiesel production greener, producing a biofuel substituent to mineral diesel by the reuse (or recycling) of waste.Key words: Methylic biodiesel; Ethylic biodiesel; Waste frying oils
Idioma: Inglés

Artículos similares:

Economic Analysis of Liquefied Natural Gas Floating Production Storage and Offloading Plant (LNG FPSO) Using Probabilistic Approach por N. Edwin, Lazson; Department of Petroleum and Gas Engineering, University of Port Harcourt,S. Sunday, Ikiensikimama; Department of Petroleum and Gas Engineering, University of Port Harcourt
Design and Operational Procedures for a Locally Made Steam Distillation Apparatus por Hosein, Raffie; Chemical Engineering Department, The University of the West Indies, St Augustine,Lewis-Hosein, Rhonda; Chemical Engineering Department, The University of the West Indies, St Augustine
The Effects of Pore Pressure and Temperature Difference Variation on Borehole Stability por Chi, AI; Key Laboratory of Education Ministry for Enhanced Oil Recovery, Northeast Petroleum University, Daqing, Hei Longjiang Province, China.,Yuwei, LI; Key Laboratory of Education Ministry for Enhanced Oil Recovery, Northeast Petroleum University, Daqing, Hei Longjiang Province, China.,Yu, LIU; Key Laboratory of Education Ministry for Enhanced Oil Recovery, Northeast Petroleum University, Daqing, Hei Longjiang Province, China.
Contents por Chao, Jamie
Finite Volume Method for Solving a Modified 3-D 3-Phase Black-Oil Hydrocarbon Secondary Migration Model, and Its Application to the Kuqa Depression of the Tarim Basin in Western China por Guangren, SHI; Research Institute of Petroleum Exploration and Development, PetroChina,Jinshan, MA; Research Institute of Petroleum Exploration and Development, PetroChina,Xinshe, YANG; Mathematics and Scientiic Computing, National Physical Laboratory,Junhua, CHANG; Research Institute of Petroleum Exploration and Development, PetroChina,Jun, WAN; Research Institute of Petroleum Exploration and Development, PetroChina
Determination of Non-Darcy Porous Flow Boundary Value in Formation Type III por Yikun, LIU; EOR key lab in the Ministry Of Education in Northeast Petroleum University.,Shuang, LIANG; EOR key lab in the Ministry Of Education in Northeast Petroleum University.,Lingyun, CHEN; EOR key lab in the Ministry Of Education in Northeast Petroleum University.,Fengjiao, WANG; EOR key lab in the Ministry Of Education in Northeast Petroleum University.,Yang, XUAN; Production Engineering Research Institute in Daqing Oil Field Co.,Qian, LIU; The second factory in Daqing Oil Field Co.
Cotton Oil and Sunflower Oil Fuel Mixtures por Arapatsakos, Charalampos; Department of Production and Management Engineering, Democritus University of Thrace, V. Sofias Street, 67100, Xanthi , GREECE,Karkanis, Anastasios; Department of Production and Management Engineering, Democritus University of Thrace, V. Sofias Street, 67100, Xanthi , GREECE,Christoforidis, Dimitrios; Department of Production and Management Engineering, Democritus University of Thrace, V. Sofias Street, 67100, Xanthi , GREECE,Moschou, Marianthi; Department of Production and Management Engineering, Democritus University of Thrace, V. Sofias Street, 67100, Xanthi , GREECE,Pantokratoras, Ioannis; Department of Production and Management Engineering, Democritus University of Thrace, V. Sofias Street, 67100, Xanthi , GREECE
10 
Principal Points in Cementing Geothermal Wells por Salim, Prisca; Texas A&M University at Qatar,Amani, Mahmood; Texas A&M University at Qatar