Título: Analysis of Oil Production Behavior for the Fractured Basement Reservoir Using Hybrid Discrete Fractured Network Approach
Autores: Han, J. J.; Petroleum & Natural Gas Engineering Lab., Department of Natural Resources and Environmental Engineering, Hanyang University, Korea
Lee, T. H.; Petroleum & Natural Gas Engineering Lab., Department of Natural Resources and Environmental Engineering, Hanyang University, Korea
Sung, W. M.; Petroleum & Natural Gas Engineering Lab., Department of Natural Resources and Environmental Engineering, Hanyang University, Korea
Fecha: 2013-03-31
Publicador: Advances in Petroleum Exploration and Development
Fuente:
Tipo: info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Peer-reviewed Article

Tema:
Dual-porosity; Hybrid DFN; Fractured basement reservoir; Local grid refinement

Descripción: Unlike naturally fractured reservoir, fractured basement reservoir (FBR) has almost non-permeable matrix and flow is strongly dependent upon fracture network. This might cause the rapid changing behavior on oil production whether fracture near wellbore is saturated with either oil or water. In this aspect, realistic representation of fracture network is essential in FBR. Therefore the simulation of FBR is generally applied by dual-porosity (DP) continuum approach because discrete fractured network (DFN) simulator with multiphase flow is not commercially available except in-house model. In this paper, hybrid DFN approach is applied, which is continuum model coupled with local grid refinement (LGR). LGR is adapted at the cells which are passing through fractures, in order to represent fracture width less than 0.1 ft. Up to now, LGR is mostly used for well block rather than the fracture. In this approach, well control volume can not be described by LGR cell, thus, four-leg horizontal well concept substitutes the vertical well with the use of equivalent wellbore radius for overcoming the numerical convergence problem. The application of hybrid DFN approach for FBR is discussed about investigation of the possibility for drastic change on oil production. Based on the results, in fractured reservoir using hybrid DFN approach, oil production is not found to be proportional to the magnitude of matrix permeability, not as in porous system with dual-porosity approach. Also, we realized that oil production is once dropped it can not be recovered back to previous level in FBR. This is because oil-saturated fracture near well is once changed to water-saturated, then, there was not anymore changes occurred within the same fracture.Key words: Dual-porosity; Hybrid DFN; Fractured basement reservoir; Local grid refinement
Idioma: Inglés

Artículos similares:

Economic Analysis of Liquefied Natural Gas Floating Production Storage and Offloading Plant (LNG FPSO) Using Probabilistic Approach por N. Edwin, Lazson; Department of Petroleum and Gas Engineering, University of Port Harcourt,S. Sunday, Ikiensikimama; Department of Petroleum and Gas Engineering, University of Port Harcourt
Design and Operational Procedures for a Locally Made Steam Distillation Apparatus por Hosein, Raffie; Chemical Engineering Department, The University of the West Indies, St Augustine,Lewis-Hosein, Rhonda; Chemical Engineering Department, The University of the West Indies, St Augustine
The Effects of Pore Pressure and Temperature Difference Variation on Borehole Stability por Chi, AI; Key Laboratory of Education Ministry for Enhanced Oil Recovery, Northeast Petroleum University, Daqing, Hei Longjiang Province, China.,Yuwei, LI; Key Laboratory of Education Ministry for Enhanced Oil Recovery, Northeast Petroleum University, Daqing, Hei Longjiang Province, China.,Yu, LIU; Key Laboratory of Education Ministry for Enhanced Oil Recovery, Northeast Petroleum University, Daqing, Hei Longjiang Province, China.
Contents por Chao, Jamie
Finite Volume Method for Solving a Modified 3-D 3-Phase Black-Oil Hydrocarbon Secondary Migration Model, and Its Application to the Kuqa Depression of the Tarim Basin in Western China por Guangren, SHI; Research Institute of Petroleum Exploration and Development, PetroChina,Jinshan, MA; Research Institute of Petroleum Exploration and Development, PetroChina,Xinshe, YANG; Mathematics and Scientiic Computing, National Physical Laboratory,Junhua, CHANG; Research Institute of Petroleum Exploration and Development, PetroChina,Jun, WAN; Research Institute of Petroleum Exploration and Development, PetroChina
Determination of Non-Darcy Porous Flow Boundary Value in Formation Type III por Yikun, LIU; EOR key lab in the Ministry Of Education in Northeast Petroleum University.,Shuang, LIANG; EOR key lab in the Ministry Of Education in Northeast Petroleum University.,Lingyun, CHEN; EOR key lab in the Ministry Of Education in Northeast Petroleum University.,Fengjiao, WANG; EOR key lab in the Ministry Of Education in Northeast Petroleum University.,Yang, XUAN; Production Engineering Research Institute in Daqing Oil Field Co.,Qian, LIU; The second factory in Daqing Oil Field Co.
Cotton Oil and Sunflower Oil Fuel Mixtures por Arapatsakos, Charalampos; Department of Production and Management Engineering, Democritus University of Thrace, V. Sofias Street, 67100, Xanthi , GREECE,Karkanis, Anastasios; Department of Production and Management Engineering, Democritus University of Thrace, V. Sofias Street, 67100, Xanthi , GREECE,Christoforidis, Dimitrios; Department of Production and Management Engineering, Democritus University of Thrace, V. Sofias Street, 67100, Xanthi , GREECE,Moschou, Marianthi; Department of Production and Management Engineering, Democritus University of Thrace, V. Sofias Street, 67100, Xanthi , GREECE,Pantokratoras, Ioannis; Department of Production and Management Engineering, Democritus University of Thrace, V. Sofias Street, 67100, Xanthi , GREECE
10 
Principal Points in Cementing Geothermal Wells por Salim, Prisca; Texas A&M University at Qatar,Amani, Mahmood; Texas A&M University at Qatar