Título: Mechanistic Leak-Detection Modeling for Single Gas-Phase Pipelines: Lessons Learned from Fit to Field-Scale Experimental Data
Autores: Edrisi, A.; Craft & Hawkins Department of Petroleum Engineering, Louisiana State University
Kam, S. I.; Craft & Hawkins Department of Petroleum Engineering, Louisiana State University
Fecha: 2013-03-31
Publicador: Advances in Petroleum Exploration and Development
Fuente:
Tipo: info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Peer-reviewed Article

Tema:
Leak; Leak detection modeling; Pipeline; Leak coefficient; Gas flow in pipe

Descripción: The use of pipelines is one of the most popular ways of delivering gas phases as shown by numerous examples in hydrocarbon transportation systems in Arctic regions, oil and gas production facilities in onshore and offshore wells, and municipal gas distribution systems in urban areas. A gas leak from pipelines can cause serious problems not only because of the financial losses associated but also its social and environmental impacts. Therefore, establishing an early leak detection model is vital to safe and secure operations of such pipeline systems.A leak detection model for a single gas phase is presented in this study by using material balance and pressure traverse calculations. The comparison between two steady states, with and without leak, makes it possible to quantify the magnitude of disturbance in two leak detection indicators such as the change in inlet pressure (ΔPin) and the change in outlet flow rate (Δqout) in a broad range of leak locations (xleak) and leak opening sizes (dleak). The results from the fit to large-scale experimental data of Scott and Yi (1998) show that the value of leak coefficient (CD), which is shown to be the single-most important but largely unknown parameter, ranges from 0.55 to 4.11, and should be a function of Reynolds number (NRe) which is related to leak characteristics such as leak location (xleak), leak opening size (dleak), leak rate (qleak) and system pressure. Further investigations show that between the two leak detection indicators, the change in outlet flow rate (Δqout) is superior to the change in inlet pressure (ΔPin) because of larger disturbance, if the pressure drop along the pipeline is relatively small compared to the outlet pressure; otherwise, the change in inlet pressure (ΔPin) is superior to the change in outlet flow rate (Δqout).Key words: Leak; Leak detection modeling; Pipeline; Leak coefficient; Gas flow in pipe
Idioma: Inglés

Artículos similares:

Economic Analysis of Liquefied Natural Gas Floating Production Storage and Offloading Plant (LNG FPSO) Using Probabilistic Approach por N. Edwin, Lazson; Department of Petroleum and Gas Engineering, University of Port Harcourt,S. Sunday, Ikiensikimama; Department of Petroleum and Gas Engineering, University of Port Harcourt
Design and Operational Procedures for a Locally Made Steam Distillation Apparatus por Hosein, Raffie; Chemical Engineering Department, The University of the West Indies, St Augustine,Lewis-Hosein, Rhonda; Chemical Engineering Department, The University of the West Indies, St Augustine
The Effects of Pore Pressure and Temperature Difference Variation on Borehole Stability por Chi, AI; Key Laboratory of Education Ministry for Enhanced Oil Recovery, Northeast Petroleum University, Daqing, Hei Longjiang Province, China.,Yuwei, LI; Key Laboratory of Education Ministry for Enhanced Oil Recovery, Northeast Petroleum University, Daqing, Hei Longjiang Province, China.,Yu, LIU; Key Laboratory of Education Ministry for Enhanced Oil Recovery, Northeast Petroleum University, Daqing, Hei Longjiang Province, China.
Contents por Chao, Jamie
Finite Volume Method for Solving a Modified 3-D 3-Phase Black-Oil Hydrocarbon Secondary Migration Model, and Its Application to the Kuqa Depression of the Tarim Basin in Western China por Guangren, SHI; Research Institute of Petroleum Exploration and Development, PetroChina,Jinshan, MA; Research Institute of Petroleum Exploration and Development, PetroChina,Xinshe, YANG; Mathematics and Scientiic Computing, National Physical Laboratory,Junhua, CHANG; Research Institute of Petroleum Exploration and Development, PetroChina,Jun, WAN; Research Institute of Petroleum Exploration and Development, PetroChina
Determination of Non-Darcy Porous Flow Boundary Value in Formation Type III por Yikun, LIU; EOR key lab in the Ministry Of Education in Northeast Petroleum University.,Shuang, LIANG; EOR key lab in the Ministry Of Education in Northeast Petroleum University.,Lingyun, CHEN; EOR key lab in the Ministry Of Education in Northeast Petroleum University.,Fengjiao, WANG; EOR key lab in the Ministry Of Education in Northeast Petroleum University.,Yang, XUAN; Production Engineering Research Institute in Daqing Oil Field Co.,Qian, LIU; The second factory in Daqing Oil Field Co.
Cotton Oil and Sunflower Oil Fuel Mixtures por Arapatsakos, Charalampos; Department of Production and Management Engineering, Democritus University of Thrace, V. Sofias Street, 67100, Xanthi , GREECE,Karkanis, Anastasios; Department of Production and Management Engineering, Democritus University of Thrace, V. Sofias Street, 67100, Xanthi , GREECE,Christoforidis, Dimitrios; Department of Production and Management Engineering, Democritus University of Thrace, V. Sofias Street, 67100, Xanthi , GREECE,Moschou, Marianthi; Department of Production and Management Engineering, Democritus University of Thrace, V. Sofias Street, 67100, Xanthi , GREECE,Pantokratoras, Ioannis; Department of Production and Management Engineering, Democritus University of Thrace, V. Sofias Street, 67100, Xanthi , GREECE
10 
Principal Points in Cementing Geothermal Wells por Salim, Prisca; Texas A&M University at Qatar,Amani, Mahmood; Texas A&M University at Qatar