Título: The Research Progress of Oil Sand Separation Technology in China
Autores: Chaohe, FANG; Research Institute of Petroleum Exploration and Development-LangFang, Langfang, Hebei State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing
Dewen, ZHENG; Research Institute of Petroleum Exploration and Development-LangFang, Langfang, Hebei
Xiaolong, LI; Research Institute of Petroleum Exploration and Development-LangFang, Langfang, Hebei
Zhilong, HUANG; State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing
Fecha: 2012-12-31
Publicador: Advances in Petroleum Exploration and Development
Fuente:
Tipo: info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Peer-reviewed Article

Tema:
Oil sand; Hot water separation technology; Separation reagent; Tests

Descripción: From 2007 to 2008, Research Institute of Petroleum Exploration & Development, Langfang Branch launched oil sand resource exploration and the study of hot water separation technology in Fengcheng area, Northwest of Junggar Basin, and the recoverable oil-sand oil resource is 54.98 million tons with the oil content in 7.1-10%, which is distributed in Cretaceous and Jurassic with the thickness of 80-140 meters, the cover depth of oil sand is 50-90 meters. Combining with the characteristics of the oil sand in this area and based on the research of hot water separation mechanism in oil sand, the hot water separation reagent for the oil sand in this area has been successfully developed, and its separation rate reaches 90%, provided that the concentrations of the agent is 4% and the separation temperature is 85 °C. Based on series of study, the construction of testing site, which is capable of processing 10,000 tons oil sand in this area, is completed, and the on-site separation tests of oil sand are launched with the recovery rate of 90% in normal operation, and the hot water separation technology and equipment research & development are successful.Key words: Oil sand; Hot water separation technology; Separation reagent; Tests
Idioma: Inglés

Artículos similares:

Economic Analysis of Liquefied Natural Gas Floating Production Storage and Offloading Plant (LNG FPSO) Using Probabilistic Approach por N. Edwin, Lazson; Department of Petroleum and Gas Engineering, University of Port Harcourt,S. Sunday, Ikiensikimama; Department of Petroleum and Gas Engineering, University of Port Harcourt
Design and Operational Procedures for a Locally Made Steam Distillation Apparatus por Hosein, Raffie; Chemical Engineering Department, The University of the West Indies, St Augustine,Lewis-Hosein, Rhonda; Chemical Engineering Department, The University of the West Indies, St Augustine
The Effects of Pore Pressure and Temperature Difference Variation on Borehole Stability por Chi, AI; Key Laboratory of Education Ministry for Enhanced Oil Recovery, Northeast Petroleum University, Daqing, Hei Longjiang Province, China.,Yuwei, LI; Key Laboratory of Education Ministry for Enhanced Oil Recovery, Northeast Petroleum University, Daqing, Hei Longjiang Province, China.,Yu, LIU; Key Laboratory of Education Ministry for Enhanced Oil Recovery, Northeast Petroleum University, Daqing, Hei Longjiang Province, China.
Contents por Chao, Jamie
Finite Volume Method for Solving a Modified 3-D 3-Phase Black-Oil Hydrocarbon Secondary Migration Model, and Its Application to the Kuqa Depression of the Tarim Basin in Western China por Guangren, SHI; Research Institute of Petroleum Exploration and Development, PetroChina,Jinshan, MA; Research Institute of Petroleum Exploration and Development, PetroChina,Xinshe, YANG; Mathematics and Scientiic Computing, National Physical Laboratory,Junhua, CHANG; Research Institute of Petroleum Exploration and Development, PetroChina,Jun, WAN; Research Institute of Petroleum Exploration and Development, PetroChina
Determination of Non-Darcy Porous Flow Boundary Value in Formation Type III por Yikun, LIU; EOR key lab in the Ministry Of Education in Northeast Petroleum University.,Shuang, LIANG; EOR key lab in the Ministry Of Education in Northeast Petroleum University.,Lingyun, CHEN; EOR key lab in the Ministry Of Education in Northeast Petroleum University.,Fengjiao, WANG; EOR key lab in the Ministry Of Education in Northeast Petroleum University.,Yang, XUAN; Production Engineering Research Institute in Daqing Oil Field Co.,Qian, LIU; The second factory in Daqing Oil Field Co.
Cotton Oil and Sunflower Oil Fuel Mixtures por Arapatsakos, Charalampos; Department of Production and Management Engineering, Democritus University of Thrace, V. Sofias Street, 67100, Xanthi , GREECE,Karkanis, Anastasios; Department of Production and Management Engineering, Democritus University of Thrace, V. Sofias Street, 67100, Xanthi , GREECE,Christoforidis, Dimitrios; Department of Production and Management Engineering, Democritus University of Thrace, V. Sofias Street, 67100, Xanthi , GREECE,Moschou, Marianthi; Department of Production and Management Engineering, Democritus University of Thrace, V. Sofias Street, 67100, Xanthi , GREECE,Pantokratoras, Ioannis; Department of Production and Management Engineering, Democritus University of Thrace, V. Sofias Street, 67100, Xanthi , GREECE
10 
Principal Points in Cementing Geothermal Wells por Salim, Prisca; Texas A&M University at Qatar,Amani, Mahmood; Texas A&M University at Qatar