Título: Roughness effect on the efficiency of dimer antenna based biosensor
Autores: Barchiesi, Dominique; University of technology of Troyes
Kessentini, Sameh; University of technology of Troyes
Fecha: 2012-09-29
Publicador: Advanced Electromagnetics
Fuente:
Tipo: info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Peer-reviewed Article
Tema: Electromagnetism
Roughness; DDA; nanoantenna; SERS
Descripción: The fabrication process of nanodevices is continually improved. However, most of the nanodevices, such as biosensors present rough surfaces with mean roughness of some nanometers even if the deposition rate of material is more controlled. The effect of roughness on performance of biosensors was fully addressed for plane biosensors and gratings, but rarely addressed for biosensors based on Local Plasmon Resonance. The purpose of this paper is to evaluate numerically the influence of nanometric roughness on the efficiency of a dimer nano-biosensor (two levels of roughness are considered). Therefore, we propose a general numerical method, that can be applied to any other nanometric shape, to take into account the roughness in a three dimensional model. The study focuses on both the far-field, which corresponds to the experimental detected data, and the near-field, responsible for exciting and then detecting biological molecules. The results suggest that the biosensor efficiency is highly sensitive to the surface roughness. The roughness can produce important shifts of the extinction efficiency peak and a decrease of its amplitude resulting from changes in the distribution of near-field and absorbed electric field intensities.
Idioma: Inglés

Artículos similares:

On the Evaluation of the Shielding Effectiveness of Electrically Large Enclosure por Gifuni, Angelo; University of Parthenope,Sorrentino, Antonio; University of Parthenope,Fanti, Alessandro; University of cagliari,Ferrara, Giuseppe,Migliaccio, Maurizio; University of Parthenope,Mazzarella, Giuseppe; University of Cagliari,Corona, Federico; University of Parthenope
Frequency Dependent Model of Leakage Inductance for Magnetic Components por Wilson, Peter R; School of Electronics and Computer Science University of Southampton Southampton SO17 1BJ United Kingdom
Electromagnetic Absorbers based on High-Impedance Surfaces: From ultra-narrowband to ultra-wideband absorption por Costa, Filippo; University of Pisa, Department of Information Engineering, Via G. Caruso 16, 56122 Pisa, Italy,Monorchio, Agostino; University of Pisa, Department of Information Engineering, Via G. Caruso 16, 56122 Pisa, Italy
Scattering forces on magneto-dielectric particles and the electromagnetic momentum density por Marques, Manuel I.; Universidad Autonoma de Madrid,Saenz, Juan J.; Universidad Autonoma de Madrid
Novel antenna concepts via coordinate transformation por Tichit, Paul-Henri; Univ. Paris-Sud, CNRS,Burokur, Shah Nawaz; Univ. Paris-Sud, CNRS,Wu, Xinying; Univ. Paris-Sud, CNRS,Germain, Dylan; Univ. Paris-Sud, CNRS,de Lustrac, A.; IEF, Paris-Sud University
Curvilinear vector finite difference approach to the computation of waveguide modes por Fanti, Alessandro; University of cagliari,Mazzarella, Giuseppe; University of cagliari,Montisci, Giorgio; University of cagliari
Difficulties in teaching electromagnetism: an eight year experience at Pierre and Marie Curie University por Roussel, Hélène; UPMC, Univ. Paris 6,Hélier, Marc; UPMC, Univ. Paris 6
Polarizability Matrix Extraction of a Bianisotropic Metamaterial from the Scattering Parameters of Normally Incident Plane Waves por Karamanos, Theodosios D.; Aristotle University of Thessaloniki,Dimitriadis, Alexandros I.; Aristotle University of Thessaloniki,Nikolaos V., Kantartzis; Aristotle University of Thessaloniki
Magnetic Shape Memory Alloys as smart materials for micro-positioning devices por Hubert, Arnaud; Institut Femto-ST, département AS2M 24 rue A. Savary 25000 Besancon,Calchand, Nandish; Institut Femto-ST, département AS2M 24 rue A. Savary 25000 Besancon,Le Gorrec, Yann; Institut Femto-ST, département AS2M 24 rue A. Savary 25000 Besancon,Gauthier, Jean-Yves; Laboratoire Ampère UMR 5005, Université de Lyon/CNRS INSA LYON, bat. Saint-Exupery, Avenue Jean Capelle 69621 Villeurbanne Cedex
10 
Resonant Frequency of Tunable Microstrip Ring Antenna Printed on Isotropic or Uniaxially Anisotropic Substrate por Bedra, Sami; Electronics Department, University of Batna; ALGERIA,Benkouda, Siham; Electronics Department, University of Constantine, Algeria.,Amir, Mounir; Electronics Department, University of Batna, Algeria.,Fortaki, Tarek; Electronics Department, University of Batna, Algeria.