Título: Études des interactions détergents/lipides dans les systèmes membranaires
Autores: Phoeung, Thida
Fecha: 2011-06-02
MONTHS_WITHHELD:6
2011-06-02
2011-05-05
2010-12
Publicador: Université de Montreal
Fuente:
Tipo: Thèse ou Mémoire numérique / Electronic Thesis or Dissertation
Tema: Liposomes
membranes
détergents
acides gras
amphiphiles
monoalkylés
cholestérol
stérol
constante d'affinité
libération passive
liération contrôlée
RMN
Fluorescence
FTIR
SERS
ITC
Liposomes
membranes
detergents
fatty acids
monoalylated amphiphiles
cholesterol
sterol
affinity constant
passive release
controlled release
NMR
fluorescence
FTIR
SERS
ITC
Chemistry - Physical / Chimie - Physique (UMI : 0494)
Descripción: Les liposomes sont des structures sphériques formés par l'auto-assemblage de molécules amphiphiles sous forme d'une bicouche. Cette bicouche sépare le volume intérieur du liposome du milieu extérieur, de la même manière que les membranes cellulaires. Les liposomes sont donc des modèles de membranes cellulaires et sont formulés pour étudier les processus biologiques qui font intervenir la membrane (transport de molécules à travers la membrane, effets des charges en surface, interactions entre la matrice lipidique et d'autres molécules, etc.). Parce qu'ils peuvent encapsuler une solution aqueuse en leur volume intérieur, ils sont aussi utilisés aujourd'hui comme nanovecteurs de principes actifs. Nous avons formulé des liposomes non-phospholipidiques riches en stérol que nous avons appelés stérosomes. Ces stérosomes sont composés d'environ 30 % d'amphiphiles monoalkylés et d'environ 70 % de stérols (cholestérol, Chol, et/ou sulfate de cholestérol, Schol). Quand certaines conditions sont respectées, ces mélanges sont capables de former une phase liquide ordonnée (Lo) pour donner, par extrusion, des vésicules unilamellaires. Certaines de ces nouvelles formulations ont été fonctionnalisées de manière à libérer leur contenu en réponse à un stimulus externe. En incorporant des acides gras dérivés de l’acide palmitique possédant différents pKa, nous avons pu contrôler le pH auquel la libération débute. Un modèle mathématique a été proposé afin de cerner les paramètres régissant leur comportement de libération. En incorporant un amphiphile sensible à la lumière (un dérivé de l’azobenzène), les liposomes formés semblent répondre à une radiation lumineuse. Pour ce système, il serait probablement nécessaire de tracer le diagramme de phase du mélange afin de contrôler la photo-libération de l’agent encapsulé. Nous avons aussi formulé des liposomes contenant un amphiphile cationique (le chlorure de cétylpyridinium). En tant que nanovecteurs, ces stérosomes montrent un potentiel intéressant pour la libération passive ou contrôlée de principes actifs. Pour ces systèmes, nous avons développé un modèle pour déterminer l’orientation des différentes molécules dans la bicouche. La formation de ces nouveaux systèmes a aussi apporté de nouvelles connaissances dans le domaine des interactions détergents-lipides. Aux nombreux effets du cholestérol (Chol) sur les systèmes biologiques, il faut ajouter maintenant que les stérols sont aussi capables de forcer les amphiphiles monoalkylés à former des bicouches. Cette nouvelle propriété peut avoir des répercussions sur notre compréhension du fonctionnement des systèmes biologiques. Enfin, les amphiphiles monoalkylés peuvent interagir avec la membrane et avoir des répercussions importantes sur son fonctionnement. Par exemple, l'effet antibactérien de détergents est supposé être dû à leur insertion dans la membrane. Cette insertion est régie par l'affinité existant entre le détergent et cette dernière. Dans ce cadre, nous avons voulu développer une nouvelle méthode permettant d'étudier ces affinités. Nous avons choisi la spectroscopie Raman exaltée de surface (SERS) pour sa sensibilité. Les hypothèses permettant de déterminer cette constante d’affinité se basent sur l’incapacité du détergent à exalter le signal SERS lorsque le détergent est inséré dans la membrane. Les résultats ont été comparés à ceux obtenus par titration calorimétrique isotherme (ITC). Les résultats ont montré des différences. Ces différences ont été discutées.
Liposomes are spherical structures formed by the self-assembly of amphiphilic molecules to form bilayers. The bilayer separates the interior volume of the liposome from the external milieu, as do cellular membranes. Liposomes are cellular membrane models and are used to study biological processes that occur in relation with the membrane (molecular transport across the membrane, surface charge effects, interactions between the lipid matrix and other molecules, etc.). Because they can encapsulate an aqueous solution in their interior volume, they are also used as nanovectors of active agents. We have formulated non-phospholipid liposomes enriched in sterol that we have named sterosomes. These sterosomes are composed of approximately 30 % of monoalkylated amphiphiles and around 70 % of sterols (cholesterol, Chol, and/or cholesterol sulfate, Schol). Under certain conditions, these mixtures are able to form a liquid ordered phase (Lo) and unilamellar vesicles by extrusion. Some of these new formulations were functionalized in order to release their content in response to an external stimulus. By incorporating fatty acids (palmitic acid derivatives) with different pKas, we were able to control the pH at which the release starts. A mathematical model has been proposed in order to get insights on the parameters that control their release behavior. By incorporating a light-sensitive amphiphile (an azobezene derivative), liposomes seem to respond to an irradiation. For this system, it is probably necessary to plot the phase diagram of the mixture in order to control the photo-release of the encapsulated agent. We also have formulated liposomes containing a cationic amphiphile (cetylpyridinium chloride). As nanovectors, these sterosomes show an interesting potential for passive or active agent controlled release. For these systems, a model has been developed in order to study the orientation of the different molecules in the bilayer. The formation of these new formulations has also contributed to new knowledge in the detergent-lipid interaction field. Added to the numerous known effects of cholesterol (Chol) on biological systems, we must now add that sterols are also able to force monoalkylated amphiphiles to form bilayers. This new property can have an impact on our comprehension of biological system functioning. Finally, monoalkykated amphiphiles can interact with the membrane and have a negative impact on its functioning. For example, the antibactericidal effect of detergents is supposed to be due to their insertion in the membrane. This insertion is related to the affinity between the detergent and the membrane. Within this field, we wanted to develop a new method to investigate detergent-membrane affinities. We chose surface enhanced Raman Spectroscopy (SERS) due to its sensitivity. Hypotheses allowing the determination of affinity constants are based on the incapability of the detergent to enhance the SERS signal when the detergent is inserted in the membrane. Results were compared to those obtanined bi isothermal titration calorimetry (ITC). Differences were found and are discussed.
Idioma: Francés