Título: APPROACHING LARGE SCALE ISSUES WITH A MICROSCOPIC TOOLKIT: USING THE GUT MICROBIOTA TO MITIGATE METHANE EMISSION AND OBESITY
Autores: Adeogun, Mary
Fecha: 2013-07-22
2013-07-22
2013-04-25
2013-07-22
Publicador: Universidad de Princenton
Fuente:
Tipo: Princeton University Senior Theses
Tema:
Descripción: This research explores the metabolic role of the gut microbiota in the global obesity crisis and rising threat of global warming. Enteric microbiota in the rumen emit methane as a by-product of metabolite degradation. Experiments – primarily on mice – have lead researchers to believe that the gut microbiota ratio influences fat production and absorption in human hosts. Several biotechnological mitigation strategies have been proposed to address these issues from the microbiological perspective. There are gaps in the available knowledge that prevent a complete understanding of these strategies. This research analyzes these strategies in the biological context, focusing on how each strategy directly affects the host’s metabolic processes. This analysis is supplemented with an assessment of the mitigating potential of these strategies, given a variety of other factors such as economics, environment, health, motivation, etc. The findings reveal that all mitigation strategies are complicated by the biological nuances of the microbial-host relationship: thermodynamics, energy requirements, and immunity, side effects, nutrition, and the enduring and resistant nature of the gut microbe community. Nonetheless, the potential for these strategies is promising. Methane mitigating tactics stand to make methane release by enteric fermentation a small emitter of greenhouse gases, in stark contrast to its present state as a large emitter. Obesity mitigating tactics, if undertaken with consistent physical activity and improved dieting habits, facilitate weight loss and improved metabolic syndrome conditions. To take advantage of all the potential that these strategies have to offer, it’s crucial that future research focuses on better grasping the host microbial relationship, classifying enteric microbiota strains, and elucidating microbial mechanisms.
Idioma: Inglés

Artículos similares:

Engineering solutions for a carbon-constrained world por Celia, M. A.,Nordbotten, J. M.
Impact of capillary forces on large-scale migration of CO2 por Nordbotten, Jan M.,Dahle, Helge K.
Impact of geological heterogeneity on early-stage CO2 plume migration por Ashraf, Meisam,Lie, Knut-Andreas,Nilsen, Halvor M.,Nordbotten, Jan M.,Skorstad, Arne
A model-oriented benchmark problem for CO2 storage por Dahle, Helge K.,Eigestad, Geir T.,Nordbotten, Jan M.,Pruess, K.
CO2 trapping in sloping aqiufers: High resolution numerical simulations por Elenius, Maria,Tchelepi, Hamdi,Johannsen, Klaus
Report from CO2 storage workshop por Dahle, Helge K.,Lien, Martha,Nordbotten, Jan M.,Lie, Knut-Andreas,Braathen, Alvar,Helmig, Rainer,Class, Holger,Celia, Michael A.
Summary of Princeton Workshop on Geological Storage of CO2 por Celia, Michael A.,Nordbotten, Jan M.,Bachu, Stefan,Kavetski, Dmitri,Gasda, Sarah
10