Título: Vertices of the Least Concave Majorant of Brownian Motion with Parabolic Drift
Autores: Groeneboom, Piet; Delft University of Technology
Fecha: 2011-01-01
Publicador: Electronic journal of probability
Fuente:
Tipo: Peer-reviewed Article

Tema: Brownian motion, parabolic drift, number of vertices, concave majorant, Airy functions, jump processes, Grenander estimator
60J65
Descripción: It was shown in Groeneboom (1983) that the least concave majorant of one-sided Brownian motion without drift can be characterized by a jump process with independent increments, which is the inverse of the process of slopes of the least concave majorant. This result can be used to prove the result in Sparre Andersen (1954) that the number of vertices of the smallest concave majorant of the empirical distribution function of a sample of size $n$ from the uniform distribution on $[0,1]$ is asymptotically normal, with an asymptotic expectation and variance which are both of order $\log(n)$. A similar (Markovian) inverse jump process was introduced in Groeneboom (1989), in an analysis of the least concave majorant of two-sided Brownian motion with a parabolic drift. This process is quite different from the process for one-sided Brownian motion without drift: the number of vertices in a (corresponding slopes) interval has an expectation proportional to the length of the interval and the variance of the number of vertices in such an interval is about half the size of the expectation, if the length of the interval tends to infinity. We prove an asymptotic normality result for the number of vertices in an increasing interval, which translates into a corresponding result for the least concave majorant of an empirical distribution function of a sample of size $n$, generated by a strictly concave distribution function. In this case the number of vertices is of order cube root $n$ and the variance is again about half the size of the asymptotic expectation. As a side result we obtain some interesting relations between the first moments of the number of vertices, the square of the location of the maximum of Brownian motion minus a parabola, the value of the maximum itself, the squared slope of the least concave majorant at zero, and the value of the least concave majorant at zero.An erratum is available in EJP volume 18 paper 46.
Idioma: No aplica

Artículos similares:

Lévy Classes and Self-Normalization por Khoshnevisan, Davar; University of Utah
Time-Space Analysis of the Cluster-Formation in Interacting Diffusions por Fleischmann, Klaus; Weierstrass Institute for Applied Analysis and Stochastics,Greven, Andreas; Universitat Erlangen-Nurnberg
Hausdorff Dimension of Cut Points for Brownian Motion por Lawler, Gregory F.; Duke University and Cornell University
Conditional Moment Representations for Dependent Random Variables por Bryc, Wlodzimierz; University of Cincinnati
Eigenvalue Expansions for Brownian Motion with an Application to Occupation Times por Bass, Richard F.; University of Washington,Burdzy, Krzysztof; University of Washington
Almost Sure Exponential Stability of Neutral Differential Difference Equations with Damped Stochastic Perturbations por Liao, Xiao Xin; University of Strathclyde,Mao, Xuerong; University of Strathclyde
Random Discrete Distributions Derived from Self-Similar Random Sets por Pitman, Jim; University of California, Berkeley,Yor, Marc; Université Pierre et Marie Curie
Quantitative Bounds for Convergence Rates of Continuous Time Markov Processes por Roberts, Gareth O.; University of Cambridge,Rosenthal, Jeffrey S.; University of Toronto
10 
Metastability of the Three Dimensional Ising Model on a Torus at Very Low Temperatures por Ben Arous, Gérard; Ecole Normale Supérieure,Cerf, Raphaël; Université Paris Sud