Título: Number Variance for Hierarchical Random Walks and Related Fluctuations
Autores: Bojdecki, Tomasz; University of Warsaw
Gorostiza, Luis G.; Centro de Investigacion y de Estudios Avanzados Mexico
Talarczyk, Anna; University of Warsaw
Fecha: 2011-01-01
Publicador: Electronic journal of probability
Fuente:
Tipo: Peer-reviewed Article

Tema: hierarchical random walk; hierarchical group; ultrametric; number variance; fluctuation; limit theorem
60G50; 60F05
Descripción: We study an infinite system of independent symmetric random walks on a hierarchical group, in particular, the c-random walks. Such walks are used, e.g., in mathematical physics and population biology. The number variance problem consists in investigating if the variance of the number of “particles” $N_n(L)$ lying in the ball of radius $L$ at a given step $n$ remains bounded, or even better, converges to a finite limit, as $L\to\infty$. We give a necessary and sufficient condition and discuss its relationship to transience/recurrence property of the walk. Next we consider normalized fluctuations of $N_n(L)$ around the mean as $n\to\infty$ and $L$ is increased in an appropriate way. We prove convergence of finite dimensional distributions to a Gaussian process whose properties are discussed. As the $c$-random walks mimic symmetric stable processes on $\mathbb{R}$, we compare our results with those obtained by Hambly and Jones (2007, 2009), who studied the number variance problem for an infinite system of independent symmetric stable processes on $\mathbb{R}$. Since the hierarchical group is an ultrametric space, corresponding results for symmetric stable processes and hierarchical random walks may be analogous or quite different, as has been observed in other contexts. An example of a difference in the present context is that for the stable processes a fluctuation limit process is a Gaussian process which is not Markovian and has long range dependent stationary increments, but the counterpart for hierarchical random walks is Markovian, and in a special case it has independent increments.
Idioma: No aplica

Artículos similares:

Lévy Classes and Self-Normalization por Khoshnevisan, Davar; University of Utah
Time-Space Analysis of the Cluster-Formation in Interacting Diffusions por Fleischmann, Klaus; Weierstrass Institute for Applied Analysis and Stochastics,Greven, Andreas; Universitat Erlangen-Nurnberg
Hausdorff Dimension of Cut Points for Brownian Motion por Lawler, Gregory F.; Duke University and Cornell University
Conditional Moment Representations for Dependent Random Variables por Bryc, Wlodzimierz; University of Cincinnati
Eigenvalue Expansions for Brownian Motion with an Application to Occupation Times por Bass, Richard F.; University of Washington,Burdzy, Krzysztof; University of Washington
Almost Sure Exponential Stability of Neutral Differential Difference Equations with Damped Stochastic Perturbations por Liao, Xiao Xin; University of Strathclyde,Mao, Xuerong; University of Strathclyde
Random Discrete Distributions Derived from Self-Similar Random Sets por Pitman, Jim; University of California, Berkeley,Yor, Marc; Université Pierre et Marie Curie
Quantitative Bounds for Convergence Rates of Continuous Time Markov Processes por Roberts, Gareth O.; University of Cambridge,Rosenthal, Jeffrey S.; University of Toronto
10 
Metastability of the Three Dimensional Ising Model on a Torus at Very Low Temperatures por Ben Arous, Gérard; Ecole Normale Supérieure,Cerf, Raphaël; Université Paris Sud