Título: Emergence of Giant Cycles and Slowdown Transition in Random Transpositions and k-Cycles
Autores: Berestycki, Nathanael; University of Cambridge
Fecha: 2011-01-01
Publicador: Electronic journal of probability
Fuente:
Tipo: Peer-reviewed Article

Tema: Random permutations
60J10; 60K35; 60B15; 05C80; 05C12; 05C65
Descripción: Consider the random walk on the permutation group obtained when the step distribution is uniform on a given conjugacy class. It is shown that there is a critical time at which two phase transitions occur simultaneously. On the one hand, the random walk slows down abruptly: the acceleration (i.e., the second time derivative of the distance) drops from $0$ to $-\infty$ at this time as $n\to\infty$. On the other hand, the largest cycle size changes from microscopic to giant. The proof of this last result is considerably simpler and holds more generally than in a previous result of Oded Schramm for random transpositions. It turns out that in the case of random $k$-cycles, this critical time is proportional to $1/[k(k-1)]$, whereas the mixing time is known to be proportional to $1/k$.
Idioma: No aplica

Artículos similares:

Lévy Classes and Self-Normalization por Khoshnevisan, Davar; University of Utah
Time-Space Analysis of the Cluster-Formation in Interacting Diffusions por Fleischmann, Klaus; Weierstrass Institute for Applied Analysis and Stochastics,Greven, Andreas; Universitat Erlangen-Nurnberg
Hausdorff Dimension of Cut Points for Brownian Motion por Lawler, Gregory F.; Duke University and Cornell University
Conditional Moment Representations for Dependent Random Variables por Bryc, Wlodzimierz; University of Cincinnati
Eigenvalue Expansions for Brownian Motion with an Application to Occupation Times por Bass, Richard F.; University of Washington,Burdzy, Krzysztof; University of Washington
Almost Sure Exponential Stability of Neutral Differential Difference Equations with Damped Stochastic Perturbations por Liao, Xiao Xin; University of Strathclyde,Mao, Xuerong; University of Strathclyde
Random Discrete Distributions Derived from Self-Similar Random Sets por Pitman, Jim; University of California, Berkeley,Yor, Marc; Université Pierre et Marie Curie
Quantitative Bounds for Convergence Rates of Continuous Time Markov Processes por Roberts, Gareth O.; University of Cambridge,Rosenthal, Jeffrey S.; University of Toronto
10 
Metastability of the Three Dimensional Ising Model on a Torus at Very Low Temperatures por Ben Arous, Gérard; Ecole Normale Supérieure,Cerf, Raphaël; Université Paris Sud