Título: Representation Theorems for Interacting Moran Models, Interacting Fisher-Wrighter Diffusions and Applications
Autores: Greven, Andreas; University of Erlangen-Nuernberg
Limic, Vlada; University of British Columbia
Winter, Anita; University of Erlangen-Nuernberg
Fecha: 2005-01-01
Publicador: Electronic journal of probability
Fuente:
Tipo: Peer-reviewed Article

Tema: spatially interacting Moran model; Interacting Fischer-Wright diffusions; historical process; historical martingale problem; look-down construction; exchangeability; equilibrium measure; large finite systems
60K35;60G09;92D25
Descripción: We consider spatially interacting Moran models and their diffusion limit which are interacting Fisher-Wright diffusions. The Moran model is a spatial population model with individuals of different type located on sites given by elements of an Abelian group. The dynamics of the system consists of independent migration of individuals between the sites and a resampling mechanism at each site, i.e., pairs of individuals are replaced by new pairs where each newcomer takes the type of a randomly chosen individual from the parent pair. Interacting Fisher-Wright diffusions collect the relative frequency of a subset of types evaluated for the separate sites in the limit of infinitely many individuals per site. One is interested in the type configuration as well as the time-space evolution of genealogies, encoded in the so-called historical process. The first goal of the paper is the analytical characterization of the historical processes for both models as solutions of well-posed martingale problems and the development of a corresponding duality theory. For that purpose, we link both the historical Fisher-Wright diffusions and the historical Moran models by the so-called look-down process. That is, for any fixed time, a collection of historical Moran models with increasing particle intensity and a particle representation for the limiting historical interacting Fisher-Wright diffusions are provided on one and the same probability space. This leads to a strong form of duality between spatially interacting Moran models, interacting Fisher-Wright diffusions on the one hand and coalescing random walks on the other hand, which extends the classical weak form of moment duality for interacting Fisher-Wright diffusions. Our second goal is to show that this representation can be used to obtain new results on the long-time behavior, in particular (i) on the structure of the equilibria, and of the equilibrium historical processes, and (ii) on the behavior of our models on large but finite site space in comparison with our models on infinite site space. Here the so-called finite system scheme is established for spatially interacting Moran models which implies via the look-down representation also the already known results for interacting Fisher-Wright diffusions. Furthermore suitable versions of the finite system scheme on the level of historical processes are newly developed and verified. In the long run the provided look-down representation is intended to answer questions about finer path properties of interacting Fisher-Wright diffusions.
Idioma: No aplica

Artículos similares:

Lévy Classes and Self-Normalization por Khoshnevisan, Davar; University of Utah
Time-Space Analysis of the Cluster-Formation in Interacting Diffusions por Fleischmann, Klaus; Weierstrass Institute for Applied Analysis and Stochastics,Greven, Andreas; Universitat Erlangen-Nurnberg
Hausdorff Dimension of Cut Points for Brownian Motion por Lawler, Gregory F.; Duke University and Cornell University
Conditional Moment Representations for Dependent Random Variables por Bryc, Wlodzimierz; University of Cincinnati
Eigenvalue Expansions for Brownian Motion with an Application to Occupation Times por Bass, Richard F.; University of Washington,Burdzy, Krzysztof; University of Washington
Almost Sure Exponential Stability of Neutral Differential Difference Equations with Damped Stochastic Perturbations por Liao, Xiao Xin; University of Strathclyde,Mao, Xuerong; University of Strathclyde
Random Discrete Distributions Derived from Self-Similar Random Sets por Pitman, Jim; University of California, Berkeley,Yor, Marc; Université Pierre et Marie Curie
Quantitative Bounds for Convergence Rates of Continuous Time Markov Processes por Roberts, Gareth O.; University of Cambridge,Rosenthal, Jeffrey S.; University of Toronto
10 
Metastability of the Three Dimensional Ising Model on a Torus at Very Low Temperatures por Ben Arous, Gérard; Ecole Normale Supérieure,Cerf, Raphaël; Université Paris Sud