Título: Recent developments in the evaluation of the 3D fundamental solution and its derivatives for transversely isotropic elastic materials
Autores: V. Mantič; School of Engineering, University of Seville
L. Távara; School of Engineering, University of Seville
J.E. Ortiz; School of Engineering, University of Seville
F. París; School of Engineering, University of Seville
Fecha: 2012-01-09
Publicador: Electronic journal of boundary elements
Fuente:
Tipo:
Tema: Engineering; Mathematics
transversely isotropic materials; Stroh formalism; fundamental solution; free-space Green’s functions; Somigliana identity; boundary integral equations; boundary element method
Descripción: Explicit closed-form real-variable expressions of a fundamental solution and its derivatives for three-dimensional problems in transversely linear elastic isotropic solids are presented. The expressions of the fundamental solution in displacements Uik and its derivatives, originated by a unit point force, are valid for any combination of material properties and for any orientation of the radius vector between the source and field points. An ex- pression of Uik in terms of the Stroh eigenvalues on the oblique plane normal to the radius vector is used as starting point. Working from this expression of Uik, a new approach (based on the application of the rotational symmetry of the material) for deducing the first and second order derivative kernels, Uik,j and Uik,jl respectively, has been developed. The expressions of the fundamental solution and its derivatives do not suffer from the difficulties of some previous expressions, obtained by other authors in different ways, with complex valued functions appearing for some combinations of material parameters and/or with division by zero for the radius vector at the rotational symmetry axis. The expressions of Uik, Uik,j and Uik,jl are presented in a form suitable for an efficient computational implementation in BEM codes.
Idioma: Inglés

Artículos similares:

Green's Function Method for an Axisymmetric Void Between Parallel Walls por Gautam Sudhir Chandekar; Tennessee Technological University,Joseph D. Richardson; Tennessee Technological University,Yuri A. Melnikov; Middle Tennessee State University,Sally J. Pardue; Tennessee Technological University
A BEM for the Propagation of Nonlinear Planar Free-surface Waves por V. Vinayan; University of Texas at Austin,S. A. Kinnas; University of Texas at Austin
A Hypersingular Boundary Integral Equation for a Class of Problems Concerning Infiltration from Periodic Channels por David L Clements; The University of Adelaide,Maria Lobo; The University of Adelaide,Nyoman Widana; Universitas Udayana, Bali
Numerical modelling of the blowing phase in the production of glass containers por Willem Dijkstra; Eindhoven University of Technology,Bob Mattheij
10 
Direct evaluation of hypersingular Galerkin surface integrals II por Leonard J. Gray; Oak Ridge National Laboratory,Alberto Salvadori; University of Brescia,Anh-Vu Phan; University of South Alabama,Vladislav Mantic; University of Sevilla