Título: An Advanced BEM for Thermal and Stress Analyses of Components with Thermal Barrier Coating
Autores: Shan Lu; Northwestern Polytechnical University
Menhong Dong; Northwestern Polytechnical University
Fecha: 2007-10-25
Publicador: Electronic journal of boundary elements
Fuente:
Tipo:
Tema: No aplica
Descripción: An advanced boundary element method (BEM) for 2-D steady-state thermal analysis of components with thermal barrier coating (TBC) is presented in this paper. First, a scheme of evaluating the nearly singular integrals in stress analysis of a thin body was extended to the thermal analysis of components with TBC. Then the BEM formulation for thermal analysis of multi-layered structures was developed. Next, an advanced BEM was developed for 2-D interfacial stress analysis of components with TBC. The non-linear transformation scheme in stress analysis of thinbody under traction load by BEM was extended to evaluate the nearly singular integral in BEM for thermal and centrifugal stress analysis. Then BEM formulation for multi-layer structure under thermal, centrifugal and traction loads was presented. Several numerical examples of 2-D thermal analyses and interfacial stress analyses of components with TBC were analyzed with only 32 boundary elements. The accurate numerical results can be obtained even when the ratio of the coating thickness to element length approached 10 9 − . The maximum relative percentage errors of interfacial tangent tension stresses under a complex temperature field, traction and centrifugal loads were 0.08%, 0.13% and 0.23%, respectively,. The present BEM will be an efficient tool for TBC design and TBC peeling-failure analysis.
Idioma: Inglés

Artículos similares:

Green's Function Method for an Axisymmetric Void Between Parallel Walls por Gautam Sudhir Chandekar; Tennessee Technological University,Joseph D. Richardson; Tennessee Technological University,Yuri A. Melnikov; Middle Tennessee State University,Sally J. Pardue; Tennessee Technological University
A BEM for the Propagation of Nonlinear Planar Free-surface Waves por V. Vinayan; University of Texas at Austin,S. A. Kinnas; University of Texas at Austin
A Hypersingular Boundary Integral Equation for a Class of Problems Concerning Infiltration from Periodic Channels por David L Clements; The University of Adelaide,Maria Lobo; The University of Adelaide,Nyoman Widana; Universitas Udayana, Bali
Numerical modelling of the blowing phase in the production of glass containers por Willem Dijkstra; Eindhoven University of Technology,Bob Mattheij
10 
Direct evaluation of hypersingular Galerkin surface integrals II por Leonard J. Gray; Oak Ridge National Laboratory,Alberto Salvadori; University of Brescia,Anh-Vu Phan; University of South Alabama,Vladislav Mantic; University of Sevilla