L
Título: Development of Polyoxometalate-Ionic Liquid Compounds for Processing Cellulosic Biomass
Autores: Abia, Jude A.; Northeastern State University Broken Arrow, OK USA
Ozer, Ruya; University of Tulsa
Fecha: 2013-01-31
Publicador: North Carolina State University, College of Natural Resources
Fuente: Ver documento
Tipo: info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Tema: Cellulose; Polyoxometalate; Ionic liquids; Hydrolysis; Biomass; Monosaccharides; Biofuel
Descripción: A unique approach was used in which polyoxometalate-based ionic liquids (POM-IL) were synthesized and employed for the one-pot dissolution and conversion of biomass. A library of four functional POM-IL compounds was synthesized using two cationic organic groups (1-butyl-3-methylimidazolim and 1-ethyl-3-methylimidazolium) and two anionic POMs (phosphotungstate and tungstosilicate). The POM-IL compound serves a dual-purpose. First, it dissolves approximately 30 wt% of cellulosic biomass in 2 h at 200 °C. Second, analysis using HPLC confirmed that the POM-ILs catalyze conversion of biomass into commodity monosaccharides such as glucose and xylose. All of the prepared POM-IL compounds demonstrated dynamic thermal stabilities exceeding 300 °C and were characterized using IR and thermogravimetric analysis.
Idioma: Inglés
Artículos similares:
COMPARATIVE STUDY OF LIPOPHILIC EXTRACTIVES OF HARDWOODS AND CORRESPONDING ECF BLEACHED KRAFT PULPS por Neto, Carlos Pascoal,Freire, Carmen Sofia,Pinto, Paula Cristina,Santiago, Ana Sofia,Silvestre, Armando Jorge,Evtuguin, Dmitry Victorovitch
IDENTIFICATION AND CHARACTERIZATION OF DIVERSE XYLANASES FROM THERMOPHILIC AND THERMOTOLERANT FUNGI por Ghatora, Sonia K.,Chadha, Bhupinder S.,Badhan, A. K.,Saini, H. S.,Bhat, M. K.
ENZYMES IMPROVE ECF BLEACHING OF PULP por Bajpai, Pratima,Anand, Aradhna,Sharma, Nirmal,Mishra, Shree P.,Bajpai, Pramod K.,Lachenal, Dominique
AN OVERVIEW OF THE AUSTRALIAN BIOMASS RESOURCES AND UTILIZATION TECHNOLOGIES por Moghtaderi, Behdad,Sheng, Changdong,Wall, Terry F.
10