L
Título: Split-and-merge Procedure for Image Segmentation using Bimodality Detection Approach
Autores: Chaudhuri, D.; Defence Electronics Application Laboratory, Dehradun
Agrawal, A.; Defence Electronics Application Laboratory, Dehradun
Fecha: 2010-04-21
Publicador: Defence Scientific Information & Documentation Centre
Fuente: Ver documento
Tipo:
Tema: Electronics and Instrumentation
Segmentation, clustering, bimodality, minimal spanning-tree, homogeneity factor, split-and-merge technique, image segmentation
Descripción: Image segmentation, the division of a multi-dimensional image into groups of associated pixels, is an essential step for many advanced imaging applications. Image segmentation can be performed by recursively splitting the whole image or by merging together a large number of minute regions until a specified condition is satisfied. The split-and-merge procedure of image segmentation takes an  intermediate level in an image description as the starting cutest, and thereby achieves a compromise between merging small primitive regions and recursively splitting the whole images to reach the desired final cutest. The proposed segmentation approach is a split-andmerge technique. The conventional split-and-merge algorithm is lacking in adaptability to the image semantics because of its stiff quadtree-based structure. In this paper, an automatic thresholding technique based on bimodality detection approach with non-homogeneity criterion is employed in the splitting phase of the split-and-merge segmentation scheme to directly reflect the image semantics to the image segmentation results. Since the proposed splitting technique depends upon homogeneity factor, some of the split regions may or may not split properly. There should be rechecking through merging technique between the two adjacent regions to overcome the drawback of the splitting technique. A sequential-arrange-based or a minimal spanning-tree based approach, that depends on data dimensionality of the weighted centroids of all split regions for finding the pair wise adjacent regions, is introduced. Finally, to overcome the problems caused by the splitting technique, a novel merging technique based on the density ratio of the adjacent pair regions is proposed. The algorithm has been tested on several synthetic as well as real life data and the results show the efficiency of the segmentation technique.
Idioma: Inglés
Artículos similares:
Telemetry Data Processing Methodology: An ASLV Experience por Varaprasad, R.; Indian Space Research Organisation, Sriharikota.
Infrared (8-12 um) Dome Materials: Current Status por Singh, S.S.; Defence Science Centre, Delhi.,Pratap, Surendra; Defence Science Centre, Delhi.,Prasad, Jagdish; Defence Science Centre, Delhi.,Kumar, Rajeev; Defence Science Centre, Delhi.,murari, Krishna; Defence Science Centre, Delhi.
Modulatory Effects of L- Tyrosine on Neurobehavioural Consequences of Combat Stress in Rats por Vij, Anjana G; Defence Institute of Physiology & Allied Science, Delhi,Satija, Narinder K.; Defence Institute of Physiology & Allied Science, Delhi
Oblique Impact Study in Thin Steel Armour Plate por dikshit, S.N.; Defence Metallurgical Research Laboratory, Hyderabad.
Treatment for Sulphur Mustard Poisoning -A Review por Sugendran, K.; Defence Research & Development Establishment, Gwalior,Kumar, Pravin; Defence Research & Development Establishment, Gwalior,Vijayaraghavan, R.; Defence Research & Development Establishment, Gwalior
Application of Ultrasonic Technique for Measurement of Instantaneous Burn Rate of Solid Propellants . por Deepak, Desh; Vikram Sarabhai Space Centre, Thiruvananthapuram,Jeenu, R.; Vikram Sarabhai Space Centre, Thiruvananthapuram,Sridharan, P.; Vikram Sarabhai Space Centre, Thiruvananthapuram,padmanabhan, M.S.; Vikram Sarabhai Space Centre, Thiruvananthapuram
Display For Command, Control, Communication and Intelligence System por Prabhu, S.; Defence Electronics Research Laboratory,Hyderabad.,Kanttaiah, G.; Defence Electronics Research Laboratory,Hyderabad.,Murthy, K. Krishna; Defence Electronics Research Laboratory,Hyderabad.
Converging Spherical Detonation Waves. por Rai, Arisudan; North Eastern Regional Institute of Science & Technology, Nirjuli.
Ballistic Behaviour of Tempered Steel Armour Plates under Plane Strain Condition . por dikshit, S.N.; Defence Metallurgical Research Laboratory, Hyderabad
10 
Effect of Burning Rate Modifiers on Subatmospheric Flame Temperatures of AP/HTPB Composite Solid Propellants por Krishnan, S.; Indian Institute of Technology, Chennai,swami, R.D.; Indian Institute of Technology, Chennai