Título: Nano-Wollastonite in Particleboard: Physical and Mechanical Properties
Autores: Taghiyari, Hamid Reza; Wood Science & Technology Department, Faculty of Civil Engineering, Shahid Rajaee Teacher Training University (SRTTU), Tehran, Iran
Karimi, Ali; Department of Biocomposite Technology, Institute of Tropical Forestry & Forest products (INTROP), University Putra Malaysia (UPM), 43400 Serdang Selangor, Malaysia; Department of Wood and Paper Science and Technology, Faculty of Natural Resources, The University of Tehran, Karaj, Iran
Tahir, Paridah M. D.; Department of Biocomposite Technology, Institute of Tropical Forestry & Forest products (INTROP), University Putra Malaysia (UPM), 43400 Serdang Selangor, Malaysia
Fecha: 2013-08-01
Publicador: Bioresources
Fuente:
Tipo: info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Tema: Biotechnology; Minerals; Nanoscience; Particleboard; Wollastonite; Wood-composite
Descripción: The effects of wollastonite nanofibers on the physical and mechanical properties of particleboard were studied. Nano-wollastonite (NW), with the size range of 30 to 110 nm, was applied at 5, 10, 15, and 20%, based on the dry weight of wood chips, and compared with control specimens. Two application methods of NW were used: surface application (SA) and internal application (IA). Density was kept constant at 0.68 g/cm3 for all treatments. Tests were carried out in accordance with ASTM D-1037 specifications. The obtained results showed that NW formed bonds between the wood chips and improved the physical and mechanical properties, both when applied internally and when applied superficially. However, formation of micro-cavities and decreased integration in the particleboard matrix caused by a reduction in wood chip content resulted in a decrease in the mechanical properties of IA-NW-treated specimens at higher NW consumption levels. It may be concluded that surface application of NW at a 1.5% consumption level can be recommended for use in particleboards.
Idioma: Inglés

Artículos similares:

COMPARATIVE STUDY OF LIPOPHILIC EXTRACTIVES OF HARDWOODS AND CORRESPONDING ECF BLEACHED KRAFT PULPS por Neto, Carlos Pascoal,Freire, Carmen Sofia,Pinto, Paula Cristina,Santiago, Ana Sofia,Silvestre, Armando Jorge,Evtuguin, Dmitry Victorovitch
IDENTIFICATION AND CHARACTERIZATION OF DIVERSE XYLANASES FROM THERMOPHILIC AND THERMOTOLERANT FUNGI por Ghatora, Sonia K.,Chadha, Bhupinder S.,Badhan, A. K.,Saini, H. S.,Bhat, M. K.
ENZYMES IMPROVE ECF BLEACHING OF PULP por Bajpai, Pratima,Anand, Aradhna,Sharma, Nirmal,Mishra, Shree P.,Bajpai, Pramod K.,Lachenal, Dominique
AN OVERVIEW OF THE AUSTRALIAN BIOMASS RESOURCES AND UTILIZATION TECHNOLOGIES por Moghtaderi, Behdad,Sheng, Changdong,Wall, Terry F.
10