Título: Influences of Layered Structure on Physical and Mechanical Properties of Kenaf Core Particleboard
Autores: Xu, Xinwu; College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, P.R. China 210037
Wu, Qinglin; College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, P.R. China 210037; School of Renewable Natural Resources, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
Zhou, Dingguo; College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, P.R. China 210037
Fecha: 2013-08-01
Publicador: Bioresources
Fuente:
Tipo: info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Tema: Kenaf; Particleboard; Structure; MDI; PF
Descripción: Kenaf (Hibiscus cannabinus), a fast-growing fiber crop, is a potential substitute for wood to make composition boards. This work investigated single- and three-layer kenaf core particleboards (KPBs) and kenaf core-cedar wood composite particleboard (KCPB) with polymeric methylene diphenyl diisocyanate (pMDI) and phenol formaldehyde (PF) resins. The physical and mechanical properties including bending modulus (MOE) and strength (MOR), internal bond (IB) strength, water absorption (WA), thickness swelling (TS), and linear expansion (LE) were tested following the ASTM D 1037 and ANSI A 208.1 standards. It was shown that kenaf core can be made into standard-satisfying particleboards with comparable performances to cedar-based wood panels. Three processing factors, i.e., board density, resin content, and layered construction, had significant influences on panel properties. KPBs denser than 0.70 g/cm3 and with 6% PF met with the standard specifications. The WA, TS, and LE of single-layer KPBs decreased with increased density. Three-layer KPBs showed improved MOE, MOR, and IB strengths, and effectively avoided the unbalanced structure shown in the single-layer KPBs in thickness direction. The three-layer KPBs with a 50:50 surface-to-core ratio had the best comprehensive performances. The results can be helpful for the application of kenaf residues in the wood composites industry.
Idioma: Inglés

Artículos similares:

COMPARATIVE STUDY OF LIPOPHILIC EXTRACTIVES OF HARDWOODS AND CORRESPONDING ECF BLEACHED KRAFT PULPS por Neto, Carlos Pascoal,Freire, Carmen Sofia,Pinto, Paula Cristina,Santiago, Ana Sofia,Silvestre, Armando Jorge,Evtuguin, Dmitry Victorovitch
IDENTIFICATION AND CHARACTERIZATION OF DIVERSE XYLANASES FROM THERMOPHILIC AND THERMOTOLERANT FUNGI por Ghatora, Sonia K.,Chadha, Bhupinder S.,Badhan, A. K.,Saini, H. S.,Bhat, M. K.
ENZYMES IMPROVE ECF BLEACHING OF PULP por Bajpai, Pratima,Anand, Aradhna,Sharma, Nirmal,Mishra, Shree P.,Bajpai, Pramod K.,Lachenal, Dominique
AN OVERVIEW OF THE AUSTRALIAN BIOMASS RESOURCES AND UTILIZATION TECHNOLOGIES por Moghtaderi, Behdad,Sheng, Changdong,Wall, Terry F.
10