Título: Synergistic Effects of Lignin-Phenol-based Nonionic Surfactant with Anionic Surfactants in Aqueous Solution
Autores: Mao, Cuiping; State Key Laboratory of Pulp & Paper Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou, Guangdong Province, China
Wu, Shubin; State Key Laboratory of Pulp & Paper Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou, Guangdong Province, China
Fecha: 2013-08-01
Publicador: Bioresources
Fuente:
Tipo: info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Tema: Lignin-phenol; Nonionic surfactant; Synergy; Non-ideal mixed micelles
Descripción: Surfactants made from modified lignin are attracting growing attention; therefore, a lignin-phenol nonionic surfactant named ML-AL has been prepared by modifying liquefied industrial alkali lignin (L-AL). Its basic physical and chemical properties have been shown to be favorable. In this work, anionic surfactants of sodium fatty acid soap (carbon numbers 12, 16, and 18) and sulfur-containing anionic surfactants (sodium dodecyl sulfate and sodium dodecyl benzene sulfonate) were chosen to mix with ML-AL in water-soluble media. The surface properties of each binary mixed solution system with anionic surfactant were investigated. At the same time, the mixed micelles formed by ML-AL and each anionic surfactant were studied. Non-ideal mixed micelles were obtained via ML-AL and the tested anionic surfactant. The interaction parameter (βM) and excess free energy (ΔGexcess) were both negative. Meanwhile, the critical micelle concentration (CMC) values of mixed systems (formed by ML-AL and each anionic surfactant in aqueous solution) were lower than those of a single-component system (ML-AL or single anionic surfactant). There was an optimum dosage ratio of about 0.4 in terms of synergistic effects. This research could provide a foundation for practical applications of combinations with anionic surfactants in aqueous solution.
Idioma: Inglés

Artículos similares:

COMPARATIVE STUDY OF LIPOPHILIC EXTRACTIVES OF HARDWOODS AND CORRESPONDING ECF BLEACHED KRAFT PULPS por Neto, Carlos Pascoal,Freire, Carmen Sofia,Pinto, Paula Cristina,Santiago, Ana Sofia,Silvestre, Armando Jorge,Evtuguin, Dmitry Victorovitch
IDENTIFICATION AND CHARACTERIZATION OF DIVERSE XYLANASES FROM THERMOPHILIC AND THERMOTOLERANT FUNGI por Ghatora, Sonia K.,Chadha, Bhupinder S.,Badhan, A. K.,Saini, H. S.,Bhat, M. K.
ENZYMES IMPROVE ECF BLEACHING OF PULP por Bajpai, Pratima,Anand, Aradhna,Sharma, Nirmal,Mishra, Shree P.,Bajpai, Pramod K.,Lachenal, Dominique
AN OVERVIEW OF THE AUSTRALIAN BIOMASS RESOURCES AND UTILIZATION TECHNOLOGIES por Moghtaderi, Behdad,Sheng, Changdong,Wall, Terry F.
10