Título: Hydrotropic Fractionation of Birch Wood into Cellulose and Lignin: A New Step Towards Green Biorefinery
Autores: Gabov, Konstantin; Åbo Akademi University
Fardim, Pedro; Åbo Akademi University
Gomes da Silva Júnior, Francides; University of Sao Paulo
Fecha: 2013-05-01
Publicador: Bioresources
Fuente:
Tipo: info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Tema: Hydrotropic treatment; Sodium xylenesulphonate; Birch wood; Hydrotropic lignin; Hydrotropic pulp
Descripción: Hydrotropic treatment is an attractive process that uses water-soluble and environmentally friendly chemicals. Currently, this method is practically unexploited on a large scale due to the long treatment times required. In this study, the hydrotropic process was modified by the addition of hydrogen peroxide, formic acid, or both. The modified treatments were more selective than the reference, and the pulps obtained using the modified treatments had lower lignin contents. After bleaching, the resultant pulps were comparable to dissolving pulps with respect to the content of hemicelluloses and viscosity. Cellulose solutions were successfully obtained in a 7% NaOH/12% urea aqueous solvent after pretreating the bleached pulp with a HCl/EtOH mixture. Hydrotropic lignin was recovered from the spent solution by precipitation in water. The lignin had very low contents of carbohydrates and sulphur. The preliminary results show that a hydrotropic process can be used for such biorefinery applications as fractionation of fibres, cellulose polymer, and lignin from birch wood. The green cellulose and lignin biopolymers can potentially be used for shaping biomaterials or production of bio-based chemicals.
Idioma: Inglés

Artículos similares:

COMPARATIVE STUDY OF LIPOPHILIC EXTRACTIVES OF HARDWOODS AND CORRESPONDING ECF BLEACHED KRAFT PULPS por Neto, Carlos Pascoal,Freire, Carmen Sofia,Pinto, Paula Cristina,Santiago, Ana Sofia,Silvestre, Armando Jorge,Evtuguin, Dmitry Victorovitch
IDENTIFICATION AND CHARACTERIZATION OF DIVERSE XYLANASES FROM THERMOPHILIC AND THERMOTOLERANT FUNGI por Ghatora, Sonia K.,Chadha, Bhupinder S.,Badhan, A. K.,Saini, H. S.,Bhat, M. K.
ENZYMES IMPROVE ECF BLEACHING OF PULP por Bajpai, Pratima,Anand, Aradhna,Sharma, Nirmal,Mishra, Shree P.,Bajpai, Pramod K.,Lachenal, Dominique
AN OVERVIEW OF THE AUSTRALIAN BIOMASS RESOURCES AND UTILIZATION TECHNOLOGIES por Moghtaderi, Behdad,Sheng, Changdong,Wall, Terry F.
10