Título: Cantilever Beam Static and Dynamic Response Comparison with Mid-Point Bending for Thin MDF Composite Panels
Autores: Hunt, John F.; USDA Forest Products Laboratory, Madison WI, 53726 USA
Zhang, Houjiang; School of Technology, Beijing Forestry University, Beijing 100083, CHINA
Guo, Zhiren; School of Technology, Beijing Forestry University, Beijing 100083, CHINA
Fu, Feng; Chinese Academy of Forestry, Wanshou Shan, Beijing, CHINA
Fecha: 2012-11-05
Publicador: Bioresources
Fuente:
Tipo: info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Tema: Cantilever beam; Damping ratio; Dynamic modulus; Free-vibration; Static bending;
Descripción: A new cantilever beam apparatus has been developed to measure static and vibrational properties of small and thin samples of wood or composite panels. The apparatus applies a known displacement to a cantilever beam, measures its static load, then releases it into its natural first mode of transverse vibration. Free vibrational tip displacements as a function of time were recorded. This paper compares the test results from the cantilever beam static bending and vibration with standard mid-point simply supported bending samples. Medium density fiberboard panels were obtained from four different commercial sources. Comparisons were made using a set of fiberboard panels with thicknesses of 8.1, 4.5, 3.7, and 2.6 mm and nominal densities of 700, 770, 780, and 830 kg/m3, respectively. Cantilever beam static modulus and dynamic modulus of elasticity linearly correlated well but were consistently higher than standard mid-point bending modulus of elasticity having linear correlations of 1.12:1 and 1.26:1, respectively. The higher strain rates of both the static and vibrating cantilever beam could be the primary reason for the slightly higher dynamic modulus values. The log decrement of the displacement was also used to calculate the damping ratio for the cantilever beam. As expected, damping ratio had a slightly decreasing slope as density increased. This paper discusses the new apparatus and initial results.
Idioma: Inglés

Artículos similares:

COMPARATIVE STUDY OF LIPOPHILIC EXTRACTIVES OF HARDWOODS AND CORRESPONDING ECF BLEACHED KRAFT PULPS por Neto, Carlos Pascoal,Freire, Carmen Sofia,Pinto, Paula Cristina,Santiago, Ana Sofia,Silvestre, Armando Jorge,Evtuguin, Dmitry Victorovitch
IDENTIFICATION AND CHARACTERIZATION OF DIVERSE XYLANASES FROM THERMOPHILIC AND THERMOTOLERANT FUNGI por Ghatora, Sonia K.,Chadha, Bhupinder S.,Badhan, A. K.,Saini, H. S.,Bhat, M. K.
ENZYMES IMPROVE ECF BLEACHING OF PULP por Bajpai, Pratima,Anand, Aradhna,Sharma, Nirmal,Mishra, Shree P.,Bajpai, Pramod K.,Lachenal, Dominique
AN OVERVIEW OF THE AUSTRALIAN BIOMASS RESOURCES AND UTILIZATION TECHNOLOGIES por Moghtaderi, Behdad,Sheng, Changdong,Wall, Terry F.
10