Título: EFFECT OF CELLULOSE STRUCTURE ON ENZYMATIC HYDROLYSIS
Autores: Ioelovich, Michael
Morag, Ely
Fecha: 2011-04-29
Publicador: Bioresources
Fuente:
Tipo: info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Tema: Cellulose; Structure; Enzymatic hydrolysis; Correlations
Descripción: Enzymatic hydrolysis of non-dried and dried cellulose samples having various particles size, degree of polymerization, porosity, crystalline polymorph, and content of non-crystalline domains has been studied. Regression analysis was carried out to determine contribution of various structural features of cellulose samples to their hydrolysability. It was found that particle size, degree of polymerization, and crystalline polymorph had a negligible influence on the conversion degree of cellulose into glucose under the effect of the cellulolytic enzyme. Such characteristics as the pores volume had a fair impact on the conversion degree of cellulose. Drying of the wet samples caused decreasing of the hydrolysability of cellulose due to irreversible collapse of the pores volume. The content of non-crystalline domains (Ax) in cellulose had the highest effect on the rate of enzymatic hydrolysis and average conversion degree (αa) of cellulose into glucose. A linear dependence αa = f(Ax) was established both for dried and non-dried cellulose samples.
Idioma: Inglés

Artículos similares:

COMPARATIVE STUDY OF LIPOPHILIC EXTRACTIVES OF HARDWOODS AND CORRESPONDING ECF BLEACHED KRAFT PULPS por Neto, Carlos Pascoal,Freire, Carmen Sofia,Pinto, Paula Cristina,Santiago, Ana Sofia,Silvestre, Armando Jorge,Evtuguin, Dmitry Victorovitch
IDENTIFICATION AND CHARACTERIZATION OF DIVERSE XYLANASES FROM THERMOPHILIC AND THERMOTOLERANT FUNGI por Ghatora, Sonia K.,Chadha, Bhupinder S.,Badhan, A. K.,Saini, H. S.,Bhat, M. K.
ENZYMES IMPROVE ECF BLEACHING OF PULP por Bajpai, Pratima,Anand, Aradhna,Sharma, Nirmal,Mishra, Shree P.,Bajpai, Pramod K.,Lachenal, Dominique
AN OVERVIEW OF THE AUSTRALIAN BIOMASS RESOURCES AND UTILIZATION TECHNOLOGIES por Moghtaderi, Behdad,Sheng, Changdong,Wall, Terry F.
10