Título: POTENTIAL OF THERMOSTABLE CELLULASES IN BIOPROCESSING OF SWITCHGRASS TO ETHANOL
Autores: Zambare, Vasudeo
Zambare, Archana
Muthukumarappan, Kasivishavanathan
Christopher, Lew P
Fecha: 2011-02-11
Publicador: Bioresources
Fuente:
Tipo: info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Tema: Switchgrass; Bioethanol, Thermostable cellulase; Enzymatic hydrolysis; Solids loadings; Optimization; Cost efficiency; Response surface methodology
Descripción: Switchgrass (Panicum virgatum), a perennial grass native to North America, is a promising energy crop for bioethanol production. The aim of this study was to optimize the enzymatic saccharification of thermo-mechanically pretreated switchgrass using a thermostable cellulase from Geobacillus sp. in a three-level, four-variable central composite design of response surface methodology. Different combinations of solids loadings (5 to 20%), enzyme loadings (5 to 20 FPU g-1 DM), temperature (50 to 70 oC), and time (36 to 96 h) were investigated in a total of 30 experiments to model glucose release from switchgrass. All four factors had a significant impact on the cellulose conversion yields with a high coefficient of determination of 0.96. The use of higher solids loadings (20%) and temperatures (70 oC) during enzymatic hydrolysis proved beneficial for the significant reduction of hydrolysis times (2.67-times) and enzyme loadings (4-times), with important implications for reduced capital and operating costs of ethanol production. At 20% solids, the increase of temperature of enzymatic hydrolysis from 50 oC to 70 oC increased glucose concentrations by 34%. The attained maximum glucose concentration of 23.52 g L-1 translates into a glucose recovery efficiency of 46% from the theoretical yield. Following red yeast fermentation, a maximum ethanol concentration of 11 g L-1 was obtained, accounting for a high glucose to ethanol fermentation efficiency of 92%. The overall conversion efficiency of switchgrass to ethanol was 42%.
Idioma: Inglés

Artículos similares:

COMPARATIVE STUDY OF LIPOPHILIC EXTRACTIVES OF HARDWOODS AND CORRESPONDING ECF BLEACHED KRAFT PULPS por Neto, Carlos Pascoal,Freire, Carmen Sofia,Pinto, Paula Cristina,Santiago, Ana Sofia,Silvestre, Armando Jorge,Evtuguin, Dmitry Victorovitch
IDENTIFICATION AND CHARACTERIZATION OF DIVERSE XYLANASES FROM THERMOPHILIC AND THERMOTOLERANT FUNGI por Ghatora, Sonia K.,Chadha, Bhupinder S.,Badhan, A. K.,Saini, H. S.,Bhat, M. K.
ENZYMES IMPROVE ECF BLEACHING OF PULP por Bajpai, Pratima,Anand, Aradhna,Sharma, Nirmal,Mishra, Shree P.,Bajpai, Pramod K.,Lachenal, Dominique
AN OVERVIEW OF THE AUSTRALIAN BIOMASS RESOURCES AND UTILIZATION TECHNOLOGIES por Moghtaderi, Behdad,Sheng, Changdong,Wall, Terry F.
10