Título: EFFECT OF POLYMER ADSORPTION ON CELLULOSE NANOFIBRIL WATER BINDING CAPACITY AND AGGREGATION
Autores: Ahola, Susanna
Myllytie, Petri
Österberg, Monika
Teerinen, Tuija
Laine, Janne
Fecha: 2008-08-01
Publicador: Bioresources
Fuente:
Tipo: info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Tema: Adsorption, polymer, cellulose nanofibril, MFC, QCM-D, SPR, CLSM
Descripción: Polymer adsorption on cellulose nanofibrils and the effect on nanofibril water binding capacity were studied using cellulose nanofibril films together with quartz crystal microbalance with dissipation (QCM-D) and surface plasmon resonance (SPR). The experiments were performed in the immersed state, and special attention was paid to the effect of polymer properties on the water content and viscoelastic properties of the polymer/fibril layer. The dry mass of the adsorbed polymers was determined using SPR. The type of the adsorbed polymer strongly affected the water content and viscoelastic properties of the nanofibril film. The adsorption of a highly charged flocculating polymer, PDADMAC, caused dehydration of the film, which was also detected as nanofibril film stiffening. The adsorption of xyloglucan introduced a dispersing effect to the nanofibril film, which was detected as a loosening and softening of the nanofibril/polymer layer. A dispersing effect was also achieved with carboxymethyl cellulose (CMC), but CMC did not adsorb irreversibly on the nanofibril surfaces. In addition to the nanofibril film studies, the effect of polymer adsorption on cellulose nanofibril suspension aggregation was demonstrated using confocal laser scanning microscopy (CLSM). Xyloglucan was shown to open the nanofibril aggregate structures and act as a dispersing agent, whereas the other polymers studied did not have as significant an effect on aggregation.
Idioma: Inglés

Artículos similares:

COMPARATIVE STUDY OF LIPOPHILIC EXTRACTIVES OF HARDWOODS AND CORRESPONDING ECF BLEACHED KRAFT PULPS por Neto, Carlos Pascoal,Freire, Carmen Sofia,Pinto, Paula Cristina,Santiago, Ana Sofia,Silvestre, Armando Jorge,Evtuguin, Dmitry Victorovitch
IDENTIFICATION AND CHARACTERIZATION OF DIVERSE XYLANASES FROM THERMOPHILIC AND THERMOTOLERANT FUNGI por Ghatora, Sonia K.,Chadha, Bhupinder S.,Badhan, A. K.,Saini, H. S.,Bhat, M. K.
ENZYMES IMPROVE ECF BLEACHING OF PULP por Bajpai, Pratima,Anand, Aradhna,Sharma, Nirmal,Mishra, Shree P.,Bajpai, Pramod K.,Lachenal, Dominique
AN OVERVIEW OF THE AUSTRALIAN BIOMASS RESOURCES AND UTILIZATION TECHNOLOGIES por Moghtaderi, Behdad,Sheng, Changdong,Wall, Terry F.
10