Título: A New Area and Power Efficient Single Edge Triggered Flip-Flop Structure for Low Data Activity and High Frequency Applications
Autores: Khan, Imran Ahmed
Beg, Mirza Tariq
Fecha: 2013-02-01
Publicador: Innovative systemas design and engineering
Fuente:
Tipo: info:eu-repo/semantics/article
Peer-reviewed Article
info:eu-repo/semantics/publishedVersion
Tema: No aplica
Descripción: In this work, a new area and power efficient single edge triggered flip-flop has been proposed. The proposed design is compared with six existing flip-flop designs. In the proposed design, the number of transistors is reduced to decrease the area. The number of clocked transistors of the devised flip-flop is also reduced to minimize the power consumption. As compared to the other state of the art single edge triggered flip-flop designs, the newly proposed design is the best energy efficient with the comparable power delay product (PDP) having an improvement of up to 61.53% in view of power consumption. The proposed flip-flop also has the lowest transistor count and the lowest area. The simulation results show that the proposed flip-flop is best suited for low power and low area systems especially for low data activity and high frequency applications. Keywords: PDP, reliability, delay, process node, clock frequency
Idioma: Inglés