Título: Edge cover and polymatroid flow problems
Autores: Hessler, Martin; Linköping University
Wästlund, Johan; Chalmers University of Technology
Fecha: 2010-01-01
Publicador: Electronic journal of probability
Fuente:
Tipo: Peer-reviewed Article

Tema: Random graphs; Combinatorial optimization
60C05; 90C27; 90C35
Descripción: In an $n$ by $n$ complete bipartite graph with independent exponentially distributed edge costs, we ask for the minimum total cost of a set of edges of which each vertex is incident to at least one. This so-called minimum edge cover problem is a relaxation of perfect matching. We show that the large $n$ limit cost of the minimum edge cover is $W(1)^2+2W(1)\approx 1.456$, where $W$ is the Lambert $W$-function. In particular this means that the minimum edge cover is essentially cheaper than the minimum perfect matching, whose limit cost is $\pi^2/6\approx 1.645$. We obtain this result through a generalization of the perfect matching problem to a setting where we impose a (poly-)matroid structure on the two vertex-sets of the graph, and ask for an edge set of prescribed size connecting independent sets.
Idioma: No aplica

Artículos similares:

Lévy Classes and Self-Normalization por Khoshnevisan, Davar; University of Utah
Time-Space Analysis of the Cluster-Formation in Interacting Diffusions por Fleischmann, Klaus; Weierstrass Institute for Applied Analysis and Stochastics,Greven, Andreas; Universitat Erlangen-Nurnberg
Hausdorff Dimension of Cut Points for Brownian Motion por Lawler, Gregory F.; Duke University and Cornell University
Conditional Moment Representations for Dependent Random Variables por Bryc, Wlodzimierz; University of Cincinnati
Eigenvalue Expansions for Brownian Motion with an Application to Occupation Times por Bass, Richard F.; University of Washington,Burdzy, Krzysztof; University of Washington
Almost Sure Exponential Stability of Neutral Differential Difference Equations with Damped Stochastic Perturbations por Liao, Xiao Xin; University of Strathclyde,Mao, Xuerong; University of Strathclyde
Random Discrete Distributions Derived from Self-Similar Random Sets por Pitman, Jim; University of California, Berkeley,Yor, Marc; Université Pierre et Marie Curie
Quantitative Bounds for Convergence Rates of Continuous Time Markov Processes por Roberts, Gareth O.; University of Cambridge,Rosenthal, Jeffrey S.; University of Toronto
10 
Metastability of the Three Dimensional Ising Model on a Torus at Very Low Temperatures por Ben Arous, Gérard; Ecole Normale Supérieure,Cerf, Raphaël; Université Paris Sud