Título: Fractional Ornstein-Uhlenbeck processes
Autores: Cheridito, Patrick; ETH Zurich
Kawaguchi, Hideyuki; Keio University and Sumitomo Mitsui Banking Corporation
Maejima, Makoto; Keio University
Fecha: 2003-01-01
Publicador: Electronic journal of probability
Fuente:
Tipo: Peer-reviewed Article

Tema: Fractional Brownian motion, Langevin equation,Long-range dependence, Selfsimilar processes, Lampertitransformation
primary: 60H10; secondary: 60G15, 60G18, 45F05
Descripción: The classical stationary Ornstein-Uhlenbeck process can be obtained in two different ways. On the one hand, it is a stationary solution of the Langevin equation with Brownian motion noise. On the other hand, it can be obtained from Brownian motion by the so called Lamperti transformation. We show that the Langevin equation with fractional Brownian motion noise also has a stationary solution and that the decay of its auto-covariance function is like that of a power function. Contrary to that, the stationary process obtained from fractional Brownian motion by the Lamperti transformation has an auto-covariance function that decays exponentially.
Idioma: No aplica

Artículos similares:

Lévy Classes and Self-Normalization por Khoshnevisan, Davar; University of Utah
Time-Space Analysis of the Cluster-Formation in Interacting Diffusions por Fleischmann, Klaus; Weierstrass Institute for Applied Analysis and Stochastics,Greven, Andreas; Universitat Erlangen-Nurnberg
Hausdorff Dimension of Cut Points for Brownian Motion por Lawler, Gregory F.; Duke University and Cornell University
Conditional Moment Representations for Dependent Random Variables por Bryc, Wlodzimierz; University of Cincinnati
Eigenvalue Expansions for Brownian Motion with an Application to Occupation Times por Bass, Richard F.; University of Washington,Burdzy, Krzysztof; University of Washington
Almost Sure Exponential Stability of Neutral Differential Difference Equations with Damped Stochastic Perturbations por Liao, Xiao Xin; University of Strathclyde,Mao, Xuerong; University of Strathclyde
Random Discrete Distributions Derived from Self-Similar Random Sets por Pitman, Jim; University of California, Berkeley,Yor, Marc; Université Pierre et Marie Curie
Quantitative Bounds for Convergence Rates of Continuous Time Markov Processes por Roberts, Gareth O.; University of Cambridge,Rosenthal, Jeffrey S.; University of Toronto
10 
Metastability of the Three Dimensional Ising Model on a Torus at Very Low Temperatures por Ben Arous, Gérard; Ecole Normale Supérieure,Cerf, Raphaël; Université Paris Sud