Título: Multiple Scale Analysis of Spatial Branching Processes under the Palm Distribution
Autores: Winter, Anita; Universität Erlangen-Nürnberg
Fecha: 2002-01-01
Publicador: Electronic journal of probability
Fuente:
Tipo: Peer-reviewed Article

Tema: Mathematics
infinite particle system, superprocess, interacting diffusion, clustering, Palm distribution, grove indexed systems of diffusions, grove indexed systems of branching models, Kallenberg's backward tree
Primary 60 K 35, 60 J 80; Secondary 60 J 60
Descripción: We consider two types of measure-valued branching processes on the lattice $Z^d$. These are on the one hand side a particle system, called branching random walk, and on the other hand its continuous mass analogue, a system of interacting diffusions also called super random walk. It is known that the long-term behavior differs sharply in low and high dimensions: if $d\leq 2$ one gets local extinction, while, for $d\geq 3$, the systems tend to a non-trivial equilibrium. Due to Kallenberg's criterion, local extinction goes along with clumping around a 'typical surviving particle.' This phenomenon is called clustering. A detailed description of the clusters has been given for the corresponding processes on $R^2$ in Klenke (1997). Klenke proved that with the right scaling the mean number of particles over certain blocks are asymptotically jointly distributed like marginals of a system of coupled Feller diffusions, called system of tree indexed Feller diffusions, provided that the initial intensity is appropriately increased to counteract the local extinction. The present paper takes different remedy against the local extinction allowing also for state-dependent branching mechanisms. Instead of increasing the initial intensity, the systems are described under the Palm distribution. It will turn out together with the results in Klenke (1997) that the change to the Palm measure and the multiple scale analysis commute, as $t\to\infty$. The method of proof is based on the fact that the tree indexed systems of the branching processes and of the diffusions in the limit are completely characterized by all their moments. We develop a machinery to describe the space-time moments of the superprocess effectively and explicitly.
Idioma: Inglés

Artículos similares:

Lévy Classes and Self-Normalization por Khoshnevisan, Davar; University of Utah
Time-Space Analysis of the Cluster-Formation in Interacting Diffusions por Fleischmann, Klaus; Weierstrass Institute for Applied Analysis and Stochastics,Greven, Andreas; Universitat Erlangen-Nurnberg
Hausdorff Dimension of Cut Points for Brownian Motion por Lawler, Gregory F.; Duke University and Cornell University
Conditional Moment Representations for Dependent Random Variables por Bryc, Wlodzimierz; University of Cincinnati
Eigenvalue Expansions for Brownian Motion with an Application to Occupation Times por Bass, Richard F.; University of Washington,Burdzy, Krzysztof; University of Washington
Almost Sure Exponential Stability of Neutral Differential Difference Equations with Damped Stochastic Perturbations por Liao, Xiao Xin; University of Strathclyde,Mao, Xuerong; University of Strathclyde
Random Discrete Distributions Derived from Self-Similar Random Sets por Pitman, Jim; University of California, Berkeley,Yor, Marc; Université Pierre et Marie Curie
Quantitative Bounds for Convergence Rates of Continuous Time Markov Processes por Roberts, Gareth O.; University of Cambridge,Rosenthal, Jeffrey S.; University of Toronto
10 
Metastability of the Three Dimensional Ising Model on a Torus at Very Low Temperatures por Ben Arous, Gérard; Ecole Normale Supérieure,Cerf, Raphaël; Université Paris Sud