Título: A local limit theorem for random walks in balanced environments
Autores: Stenlund, Mikko; University of Helsinki
Fecha: 2013-01-03
Publicador: Electronic communications in probability
Fuente:
Tipo: Peer-reviewed Article
Tema: Balanced random environment, local limit theorem, Nash inequality
60K37; 60F15, 82C41, 82D30, 35K15
Descripción: Central limit theorems for random walks in quenched random environments have attracted plenty of attention in the past years. More recently still, finer local limit theorems - yielding a Gaussian density multiplied by a highly oscillatory modulating factor - for such models have been obtained. In the one-dimensional nearest-neighbor case with i.i.d. transition probabilities, local limits of uniformly elliptic ballistic walks are now well understood. We complete the picture by proving a similar result for the only recurrent case, namely the balanced one, in which such a walk is diffusive. The method of proof is, out of necessity, entirely different from the ballistic case.
Idioma: Inglés

Artículos similares:

Simulations and Conjectures for Disconnection Exponents por Puckette, Emily E.; Occidental College,Werner, Wendelin; Université Paris-Sud and IUF
A Proof of a Conjecture of Bobkov and Houdré por Kwapien, S.; Warsaw University,Pycia, M.; Warsaw University,Schachermayer, W.; University of Vienna
Excursions Into a New Duality Relation for Diffusion Processes por Jansons, Kalvis M.; University College London
Moderate Deviations for Martingales with Bounded Jumps por Dembo, Amir; Stanford University
Percolation Beyond $Z^d$, Many Questions And a Few Answers por Benjamini, Itai; Weizmann Institute of Science,Schramm, Oded; Microsoft Research
Bounds for Disconnection Exponents por Werner, Wendelin; Université Paris-Sud and IUF
Transportation Approach to Some Concentration Inequalities in Product Spaces por Dembo, Amir; Stanford University,Zeitouni, Ofer; Technion - Israel Institute of Technology
The Dimension of the Frontier of Planar Brownian Motion por Lawler, Gregory F.; Duke University
10 
Surface Stretching for Ornstein Uhlenbeck Velocity Fields por Carmona, Rene; Princeton University,Grishin, Stanislav; Princeton University,Xu, Lin; Princeton University,Molchanov, Stanislav; University of North Carolina at Charlotte