Título: Bounding Fastest Mixing
Autores: Roch, Sébastien; University of California at Berkeley, USA
Fecha: 2005-01-01
Publicador: Electronic communications in probability
Fuente:
Tipo: Peer-reviewed Article

Tema: No aplica
Descripción: In a recent work, Boyd, Diaconis and Xiao introduced a semidefinite programming approach for computing the fastest mixing Markov chain on a graph of allowed transitions, given a target stationary distribution. In this paper, we show that standard mixing time analysis techniques---variational characterizations, conductance, canonical paths---can be used to give simple, nontrivial lower and upper bounds on the fastest mixing time. To test the applicability of this idea, we consider several detailed examples including the Glauber dynamics of the Ising model.
Idioma: No aplica

Artículos similares:

Simulations and Conjectures for Disconnection Exponents por Puckette, Emily E.; Occidental College,Werner, Wendelin; Université Paris-Sud and IUF
A Proof of a Conjecture of Bobkov and Houdré por Kwapien, S.; Warsaw University,Pycia, M.; Warsaw University,Schachermayer, W.; University of Vienna
Excursions Into a New Duality Relation for Diffusion Processes por Jansons, Kalvis M.; University College London
Moderate Deviations for Martingales with Bounded Jumps por Dembo, Amir; Stanford University
Percolation Beyond $Z^d$, Many Questions And a Few Answers por Benjamini, Itai; Weizmann Institute of Science,Schramm, Oded; Microsoft Research
Bounds for Disconnection Exponents por Werner, Wendelin; Université Paris-Sud and IUF
Transportation Approach to Some Concentration Inequalities in Product Spaces por Dembo, Amir; Stanford University,Zeitouni, Ofer; Technion - Israel Institute of Technology
The Dimension of the Frontier of Planar Brownian Motion por Lawler, Gregory F.; Duke University
10 
Surface Stretching for Ornstein Uhlenbeck Velocity Fields por Carmona, Rene; Princeton University,Grishin, Stanislav; Princeton University,Xu, Lin; Princeton University,Molchanov, Stanislav; University of North Carolina at Charlotte