Título: A System of Differential Equations for the Airy Process
Autores: Tracy, Craig A; University of California, Davis
Widom, Harold; University of California, Santa Cruz
Fecha: 2003-01-01
Publicador: Electronic communications in probability
Fuente:
Tipo: Peer-reviewed Article

Tema: Airy process. Extended Airy kernel. Growth processes. Integrable differential equations.
60K35 (05A16, 33E17, 82B44)
Descripción: The Airy process is characterized by its $m$-dimensional distribution functions. For $m=1$ it is known that this distribution function is expressible in terms of a solution to Painleve II. We show that each finite-dimensional distribution function is expressible in terms of a solution to a system of differential equations.
Idioma: No aplica

Artículos similares:

Simulations and Conjectures for Disconnection Exponents por Puckette, Emily E.; Occidental College,Werner, Wendelin; Université Paris-Sud and IUF
A Proof of a Conjecture of Bobkov and Houdré por Kwapien, S.; Warsaw University,Pycia, M.; Warsaw University,Schachermayer, W.; University of Vienna
Excursions Into a New Duality Relation for Diffusion Processes por Jansons, Kalvis M.; University College London
Moderate Deviations for Martingales with Bounded Jumps por Dembo, Amir; Stanford University
Percolation Beyond $Z^d$, Many Questions And a Few Answers por Benjamini, Itai; Weizmann Institute of Science,Schramm, Oded; Microsoft Research
Bounds for Disconnection Exponents por Werner, Wendelin; Université Paris-Sud and IUF
Transportation Approach to Some Concentration Inequalities in Product Spaces por Dembo, Amir; Stanford University,Zeitouni, Ofer; Technion - Israel Institute of Technology
The Dimension of the Frontier of Planar Brownian Motion por Lawler, Gregory F.; Duke University
10 
Surface Stretching for Ornstein Uhlenbeck Velocity Fields por Carmona, Rene; Princeton University,Grishin, Stanislav; Princeton University,Xu, Lin; Princeton University,Molchanov, Stanislav; University of North Carolina at Charlotte