Título: Tribology of bio-inspired nanowrinkled films on ultrasoft substrates
Autores: Lackner, Juergen M; JOANNEUM RESEARCH Forschungsges.m.b.H., Institute for Surface Technologies and Photonics, Functional Surfaces
Waldhauser, Wolfgang
Major, Lukasz
Teichert, Christian
Hartmann, Paul
Fecha: 2013-05-08
Publicador: Computacional and structural biotechnology journal
Fuente:
Tipo: info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion

Tema: No aplica
Descripción: Biomimetic design of new materials uses nature as antetype, learning from billions of years of evolution. This work emphasizes the mechanical and tribological properties of skin, combining both hardness and wear resistance of its surface (the stratum corneum) with high elasticity of the bulk (epidermis, dermis, hypodermis). The key for combination of such opposite properties is wrinkling, being consequence of intrinsic stresses in the bulk (soft tissue): Tribological contact to counterparts below the stress threshold for tissue trauma occurs on the thick hard stratum corneum layer pads, while tensile loads smooth out wrinkles in between these pads. Similar mechanism offers high tribological resistance to hard films on soft, flexible polymers, which is shown for diamond-like carbon (DLC) and titanium nitride thin films on ultrasoft polyurethane and harder polycarbonate substrates. The choice of these two compared substrate materials will show that ultra-soft substrate materials are decisive for the distinct tribological material. Hierarchical wrinkled structures of films on these substrates are due to high intrinsic compressive stress, which evolves during high energetic film growth. Incremental relaxation of these stresses occurs by compound deformation of film and elastic substrate surface, appearing in hierarchical nano-wrinkles. Nano-wrinkled topographies enable high elastic deformability of thin hard films, while overstressing results in zigzag film fracture along larger hierarchical wrinkle structures. Tribologically, these fracture mechanisms are highly important for ploughing and sliding of sharp and flat counterparts on hard-coated ultra-soft substrates like polyurethane. Concentration of polyurethane deformation under the applied normal loads occurs below these zigzag cracks. Unloading closes these cracks again. Even cyclic testing do not lead to film delamination and retain low friction behavior, if the adhesion to the substrate is high and the initial friction coefficient of the film against the sliding counterpart low, e.g. found for DLC.
Idioma: Inglés

Artículos similares:

Systems biology and metabolic engineering of Arthrospira cell factories por Klanchui, Amornpan,Vorapreeda, Tayvich,Vongsangnak, Wanwipa,Kannapho, Chiraphan,Cheevadhanarak, Supapon,Meechai, Asawin
The Role of INDY in Metabolic Regulation por Willmes, Diana M; Charité University School of Medicine Berlin,Birkenfeld, Andreas L; Charité University School of Medicine Berlin
Structure-based Methods for Computational Protein Functional Site Prediction por KC, Dukka B; North Carolina A&T State University
The Biochemistry of Vitreoscilla hemoglobin por Stark, Benjamin C.; Illinois Institute of Technology,Dikshit, Kanak L.; Institute of Microbial Technology,Pagilla, Krishna R.; Illinois Institute of Technology
Computer-Aided Protein Directed Evolution: a Review of Web Servers, Databases and other Computational Tools for Protein Engineering por Verma, Rajni; Jacobs University Bremen,Schwaneberg, Ulrich; RWTH Aachen University,Roccatano, Danilo; Jacobs University Bremen
A method to predict edge strands in beta-sheets from protein sequences por Guilloux, Antonin,Caudron, Bernard,Jestin, Jean-Luc
MD simulation studies to investigate iso-energetic conformational behaviour of modified nucleosides m2G and m22G present in tRNA por Bavi, Rohit S,Sambhare, Susmit B,Sonawane, Kailas D; Structural Bioinformatics Unit, Department of Biochemistry, Shivaji University, Kolhapur 416 004, Maharashtra (M.S.), India.
Metabolomics in the identification of biomarkers of dietary intake por O’Gorman, Aoife,Gibbons, Helena,Brennan, Lorraine
10